Clinical Trials Logo

Oligodendroglioma clinical trials

View clinical trials related to Oligodendroglioma.

Filter by:
  • Active, not recruiting  
  • « Prev · Page 2

NCT ID: NCT01204684 Active, not recruiting - Glioblastoma Clinical Trials

Dendritic Cell Vaccine for Patients With Brain Tumors

Start date: October 8, 2010
Phase: Phase 2
Study type: Interventional

The main purpose of this study is to evaluate the most effective immunotherapy vaccine components in patients with malignant glioma. Teh investigators previous phase I study (IRB #03-04-053) already confirmed that this vaccine procedure is safe in patients with malignant brain tumors, and with an indication of extended survival in several patients. However, the previous trial design did not allow us to test which formulation of the vaccine was the most effective. This phase II study will attempt to dissect out which components are most effective together. Dendritic cells (DC) (cells which "present" or "show" cell identifiers to the immune system) isolated from the subject's own blood will be treated with tumor-cell lysate isolated from tumor tissue taken from the same subject during surgery. This pulsing (combining) of antigen-presenting and tumor lysate will be done to try to stimulate the immune system to recognize and destroy the patient's intracranial brain tumor. These pulsed DCs will then be injected back into the patient intradermally as a vaccine. The investigators will also utilize adjuvant imiquimod or poly ICLC (interstitial Cajal-like cell) in some treatment cohorts. It is thought that the host immune system might be taught to "recognize" the malignant brain tumor cells as "foreign" to the body by effectively presenting unique tumor antigens to the host immune cells (T-cells) in vivo.

NCT ID: NCT01165632 Active, not recruiting - Adult Glioblastoma Clinical Trials

Fluorine F 18 Fluorodopa-Labeled PET Scan in Planning Surgery and Radiation Therapy in Treating Patients With Newly Diagnosed High- or Low-Grade Malignant Glioma

Start date: July 26, 2010
Phase: Early Phase 1
Study type: Interventional

RATIONALE: New imaging procedures, such as fluorine F 18 fluorodopa-labeled PET scan, may help in guiding surgery and radiation therapy and allow doctors to plan better treatment. PURPOSE: This clinical trial studies fluorine F 18 fluorodopa-labeled PET scan in planning surgery and radiation therapy in treating patients with newly diagnosed high- or low-grade malignant glioma

NCT ID: NCT01089244 Active, not recruiting - Astrocytoma Clinical Trials

FET-PET for Diagnosis and Monitoring in Patients With Low Grade Glioma

Start date: June 2008
Phase: N/A
Study type: Observational

The aim of the study is to compare the two imaging modalities perfusion weighted MR-imaging and FET-PET in their ability to provide an accurate histological evaluation of low grade glioma and to reveal focal abnormalities within a homogeneously appearing tumor. Additionally, therapeutic effects should be assessed during a time period of two years.

NCT ID: NCT00995007 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

A Randomized Phase II Trial of Vandetanib (ZD6474) in Combination With Carboplatin Versus Carboplatin Alone Followed by Vandetanib Alone in Adults With Recurrent High-Grade Gliomas

Start date: September 2009
Phase: Phase 2
Study type: Interventional

Background: - Growth of new blood vessels (angiogenesis) provides many tumors, including brain tumors, with needed nutrients and oxygen for cancer cells to survive. One possible treatment for different kinds of cancer involves treatment with drugs that slow or stop angiogenesis and prevent further tumor growth. - Vandetanib is an oral medication known to block angiogenesis and has shown significant antitumor activity in laboratory and animal studies. Vandetanib appears to be well tolerated by patients at specific daily doses. - Carboplatin is a drug that interrupts division of cancer cells and has been shown to be a useful drug in treatment of tumors known as gliomas. It is a useful drug for treating brain tumors, but researchers are interested in gathering more information about how it works as a treatment for patients who have not responded to initial surgery, radiation, or chemotherapy. Objective: - To determine the safety and effectiveness of vandetanib and carboplatin, given together or sequentially, against recurrent high-grade gliomas. Eligibility: - Adults diagnosed with a malignant glioma who have received standard treatments that no longer appear to be effective. Design: - Patients will be assigned to one of two groups. Group 1 patients (combination group) will receive oral vandetanib for 28 days and intravenous (IV) carboplatin (once at the beginning of the 28-day cycle). Group 2 patients (sequential group) will receive IV carboplatin alone (once at the beginning of the 28-day cycle) and then oral vandetanib (300 mg daily) for 28 days if the tumor grows or the patient develops unacceptable carboplatin toxicity. - Treatment will continue in 28-day cycles for 1 year for both groups. - Patients will undergo a number of tests and procedures during the treatment cycle, including physical examinations, routine laboratory tests, electrocardiograms, and magnetic resonance imaging (MRI) scans - At the end of 1 year of treatment, patients will be reevaluated for possible continuation of drug therapy.

NCT ID: NCT00823797 Active, not recruiting - Adult Glioblastoma Clinical Trials

Bendamustine Hydrochloride in Treating Patients With Recurrent or Progressive Anaplastic Glioma

Start date: October 2008
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well bendamustine hydrochloride works in treating patients with anaplastic glioma or glioblastoma that has come back (recurrent) or growing, spreading or getting worse (progressive). Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.

NCT ID: NCT00683761 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

A Study of 131I-TM601 in Adults With Recurrent Malignant Glioma

Start date: August 2008
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this study is to evaluate the safety and effectiveness of 131I-TM601 in the treatment of adult patients with progressive or recurrent malignant gliomas.

NCT ID: NCT00591058 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

Safety and Dose-Finding Study of TM-601 in Adults With Recurrent Malignant Glioma

Start date: February 2008
Phase: Phase 1
Study type: Interventional

The purpose of this study is to evaluate the safety and biologically active dose of TM-601 in adult patients with recurrent malignant glioma.

NCT ID: NCT00268385 Active, not recruiting - Adult Glioblastoma Clinical Trials

Vorinostat and Temozolomide in Treating Patients With Malignant Gliomas

Start date: December 16, 2005
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.

NCT ID: NCT00045110 Active, not recruiting - Adult Glioblastoma Clinical Trials

Erlotinib in Treating Patients With Recurrent Malignant Glioma or Recurrent or Progressive Meningioma

Start date: August 2002
Phase: Phase 1/Phase 2
Study type: Interventional

Phase I/II trial to study the effectiveness of erlotinib in treating patients who have recurrent malignant glioma or recurrent or progressive meningioma. Erlotinib may stop the growth of tumor cells by blocking the enzymes necessary for tumor cell growth.