Clinical Trials Logo

Oligodendroglioma clinical trials

View clinical trials related to Oligodendroglioma.

Filter by:
  • Active, not recruiting  
  • Page 1 ·  Next »

NCT ID: NCT05934630 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

Testing Cerebrospinal Fluid for Cell-free Tumor DNA in Children, Adolescents, and Young Adults With Brain Tumors

Start date: July 12, 2023
Phase:
Study type: Observational

Recent advances in technology have allowed for the detection of cell-free DNA (cfDNA). cfDNA is tumor DNA that can be found in the fluid that surrounds the brain and spinal cord (called cerebrospinal fluid or CSF) and in the blood of patients with brain tumors. The detection of cfDNA in blood and CSF is known as a "liquid biopsy" and is non-invasive, meaning it does not require a surgery or biopsy of tumor tissue. Multiple studies in other cancer types have shown that cfDNA can be used for diagnosis, to monitor disease response to treatment, and to understand the genetic changes that occur in brain tumors over time. Study doctors hope that by studying these tests in pediatric brain tumor patients, they will be able to use liquid biopsy in place of tests that have more risks for patients, like surgery. There is no treatment provided on this study. Patients who have CSF samples taken as part of regular care will be asked to provide extra samples for this study. The study doctor will collect a minimum of one extra tube of CSF (about 1 teaspoon or 5 mL) for this study. If the patients doctor thinks it is safe, up to 2 tubes of CSF (about 4 teaspoons or up to 20 mL) may be collected. CSF will be collected through the indwelling catheter device or through a needle inserted into the lower part of the patient's spine (known as a spinal tap or lumbar puncture). A required blood sample (about ½ a teaspoon or 2 3 mL) will be collected once at the start of the study. This sample will be used to help determine changes found in the CSF. Blood will be collected from the patient's central line or arm as a part of regular care. An optional tumor tissue if obtained within 8 weeks of CSF collection will be collected if available. Similarities between changes in the DNA of the tissue that has caused the tumor to form and grow with the cfDNA from CSF will be compared. This will help understand if CSF can be used instead of tumor tissue for diagnosis. Up to 300 people will take part in this study. This study will use genetic tests that may identify changes in the genes in the CSF. The report of the somatic mutations (the mutations that are found in the tumor only) will become part of the medical record. The results of the cfDNA sequencing will be shared with the patient. The study doctor will discuss what the results mean for the patient and patient's diagnosis and treatment. There will not be any germline sequencing results reported and these will not be disclosed to the patient, patient's clinician or be recorded in patient medical record. Patient may be monitored on this study for up to 5 years.

NCT ID: NCT04295759 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

INCB7839 in Treating Children With Recurrent/Progressive High-Grade Gliomas

Start date: July 27, 2020
Phase: Phase 1
Study type: Interventional

This is a multicenter phase 1 trial of INCB7839 for children with recurrent or progressive high-grade gliomas, including, but not limited to, diffuse intrinsic pontine glioma (DIPG) and other diffuse midline gliomas (DMGs), after upfront therapy.

NCT ID: NCT03969706 Active, not recruiting - Clinical trials for Oligodendroglioma, Adult

Abemaciclib in Patients With Oligodendroglioma

Start date: May 15, 2019
Phase: Phase 2
Study type: Interventional

This is a phase II, single arm, open label study looking how well a drug called abemaciclib works in patients with recurrent oligodendroglioma

NCT ID: NCT03180502 Active, not recruiting - Glioma Clinical Trials

Proton Beam or Intensity-Modulated Radiation Therapy in Preserving Brain Function in Patients With IDH Mutant Grade II or III Glioma

Start date: August 2, 2017
Phase: Phase 2
Study type: Interventional

This randomized phase II clinical trial studies the side effects and how well proton beam or intensity-modulated radiation therapy works in preserving brain function in patients with IDH mutant grade II or III glioma. Proton beam radiation therapy uses tiny charged particles to deliver radiation directly to the tumor and may cause less damage to normal tissue. Intensity-modulated or photon beam radiation therapy uses high-energy x-ray beams shaped to treat the tumor and may also cause less damage to normal tissue. Patients will be more likely to be randomized to proton beam radiation therapy. It is not yet known if proton beam radiation therapy is more effective than photon-based beam intensity-modulated radiation therapy in treating patients with glioma.

NCT ID: NCT02924038 Active, not recruiting - Glioma Clinical Trials

A Study of Varlilumab and IMA950 Vaccine Plus Poly-ICLC in Patients With WHO Grade II Low-Grade Glioma (LGG)

Start date: April 3, 2017
Phase: Phase 1
Study type: Interventional

This is a pilot, randomized, two arm neoadjuvant vaccine study in human leukocyte antigen-A2 positive (HLA-A2+) adults with World Health Organization (WHO) grade II glioma, for which surgical resection of the tumor is clinically indicated. Co-primary objectives are to determine: 1) the safety of the novel combination of subcutaneously administered IMA950 peptides and poly-ICLC (Hiltonol) and i.v. administered CDX-1127 (Varlilumab) in the neoadjuvant approach; and 2) whether addition of i.v. CDX-1127 (Varlilumab) increases the response rate and magnitude of CD4+ and CD8+ T-cell responses against the IMA950 peptides in post-vaccine peripheral blood mononuclear cell (PBMC) samples obtained from participating patients.

NCT ID: NCT02549833 Active, not recruiting - Glioma Clinical Trials

Neo-adjuvant Evaluation of Glioma Lysate Vaccines in WHO Grade II Glioma

Start date: October 17, 2016
Phase: Phase 1
Study type: Interventional

This is a pilot neoadjuvant vaccine study in adults with WHO grade II glioma, for which surgical resection of the tumor is clinically indicated. Co-primary objectives are to determine: 1) the safety and feasibility of the neoadjuvant approach; and 2) whether the regimen increases the level of type-1 chemokine CXCL10 and vaccine-specific (i.e., reactive to GBM6-AD) CD8+ T-cells in tumor-infiltrating leukocytes (TILs) in the surgically resected glioma.

NCT ID: NCT02209428 Active, not recruiting - Astrocytoma Clinical Trials

A Prospective Cohort to Study the Effect of Temozolomide on IDH Mutational Low Grade Gliomas

Start date: June 2014
Phase: Phase 2
Study type: Interventional

Low grade gliomas (LGGs) are the most common primary central nervous system malignancies. Brain surgeries with the most possible extent of resection are endeavored to achieve longer survivals in LGG patients. For patients with tumor located in eloquent areas so that gross total resection is not applicable, National Comprehensive Cancer Network (NCCN) 2013 guidelines assigned both radiotherapy or chemotherapy as adjuvant treatments of low grade glioma following surgeries. Retrospective studies have suggested that temozolomide (an oral chemotherapeutics) chemotherapy have good effects on the control of tumor progression or recurrence in LGG patients after surgeries, especially in those with isocitrate dehydrogenase (IDH) gene mutations. Therefore, our prospective cohort study is to provide a higher level(IIb) of evidence for the correlation between IDH mutation and the responsiveness to up-front adjuvant metronomic temozolomide chemotherapy in young patients with LGG located in eloquent brain areas. And hopefully justify future RCTs with comparison between effects of adjuvant radiotherapy and chemotherapy in these patients.

NCT ID: NCT02192359 Active, not recruiting - Clinical trials for Recurrent Glioblastoma

Carboxylesterase-Expressing Allogeneic Neural Stem Cells and Irinotecan Hydrochloride in Treating Patients With Recurrent High-Grade Gliomas

Start date: March 7, 2016
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of carboxylesterase-expressing allogeneic neural stem cells when given together with irinotecan hydrochloride in treating patients with high-grade gliomas that have come back. Placing genetically modified neural stem cells into brain tumor cells may make the tumor more sensitive to irinotecan hydrochloride. Irinotecan hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving carboxylesterase-expressing allogeneic neural stem cells and irinotecan hydrochloride may be a better treatment for high-grade gliomas.

NCT ID: NCT02101905 Active, not recruiting - Clinical trials for Recurrent Glioblastoma

Lapatinib Ditosylate Before Surgery in Treating Patients With Recurrent High-Grade Glioma

Start date: March 13, 2014
Phase: Phase 1
Study type: Interventional

This pilot phase I clinical trial studies how well lapatinib ditosylate before surgery works in treating patients with high-grade glioma that has come back after a period of time during which the tumor could not be detected. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01204684 Active, not recruiting - Glioblastoma Clinical Trials

Dendritic Cell Vaccine for Patients With Brain Tumors

Start date: October 8, 2010
Phase: Phase 2
Study type: Interventional

The main purpose of this study is to evaluate the most effective immunotherapy vaccine components in patients with malignant glioma. Teh investigators previous phase I study (IRB #03-04-053) already confirmed that this vaccine procedure is safe in patients with malignant brain tumors, and with an indication of extended survival in several patients. However, the previous trial design did not allow us to test which formulation of the vaccine was the most effective. This phase II study will attempt to dissect out which components are most effective together. Dendritic cells (DC) (cells which "present" or "show" cell identifiers to the immune system) isolated from the subject's own blood will be treated with tumor-cell lysate isolated from tumor tissue taken from the same subject during surgery. This pulsing (combining) of antigen-presenting and tumor lysate will be done to try to stimulate the immune system to recognize and destroy the patient's intracranial brain tumor. These pulsed DCs will then be injected back into the patient intradermally as a vaccine. The investigators will also utilize adjuvant imiquimod or poly ICLC (interstitial Cajal-like cell) in some treatment cohorts. It is thought that the host immune system might be taught to "recognize" the malignant brain tumor cells as "foreign" to the body by effectively presenting unique tumor antigens to the host immune cells (T-cells) in vivo.