Obesity Clinical Trial
— PREC-BEDOfficial title:
Precursors of Binge Eating Disorder in a Clinical Sample of Adolescents With Obesity: Early MRI Markers of Brain Reward and Inhibition Processing Dysfunction
NCT number | NCT06387719 |
Other study ID # | PREC-BED Study |
Secondary ID | |
Status | Recruiting |
Phase | |
First received | |
Last updated | |
Start date | July 21, 2023 |
Est. completion date | May 2026 |
BACKGROUND: Binge eating disorder (BED) is the worldwide most-prevalent eating disorder. It is associated with psychiatric comorbidities and obesity, a high impact in life functioning, and high morbidity and mortality. First symptoms appear frequently in youths, who most commonly present incomplete (subthreshold) criteria for BED (precursor forms, PREC-BED). While some subjects will evolve from PREC-BED to BED, there is no gold standard to identify the clinical evolution. Information from prior studies suggest early alterations in reward and inhibitory brain circuits in PREC-BED may predict increased vulnerability or resilience to develop BED. Tools based on MRI brain connectivity analyses (MRI-BC), built on robust and interpretable connectivity whole-brain models, have proven successful in diagnostic classification and predicting certain clinical outcomes. OBJECTIVES: To study MRI-BC diagnostic markers of PREC-BED and to explore prognosis at 1 year of follow-up in a sample of adolescents with obesity (12-17 years old). METHODS: A) Transversal analytical design: 3-group (n=34 per group) comparison of neuroimaging (MRI-BC), neurocognitive and clinical markers in adolescents with obesity and i) BED, ii) PREC-BED, iii) no BED nor PREC-BED (Healthy group, HC). B) Longitudinal analytical design, pilot, exploratory: adolescents with PREC-BED will be evaluated in clinical and neurocognitive variables at 1 year. Baseline brain neuroimaging variables (alone and in combination with clinical and neurocognitive variables) will be analyzed as predictors of clinical prognosis, including conversion to BED.
Status | Recruiting |
Enrollment | 102 |
Est. completion date | May 2026 |
Est. primary completion date | March 2025 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 12 Years to 16 Years |
Eligibility | Inclusion Criteria: - Patients derived to the Endocrinology Department with obesity as the main criterion for consultation, measured as body mass index (BMI) z-score above 2 standard deviations. - Age between 12-16 years old. - Signed informed consent by parents or legal guardians of subjects, plus the signed consent by the adolescent when being 12 or older years/old. Additional inclusion criteria for the BED and PREC-BED groups: - The presence of DSM-5 criteria for BED in the BED group. - Fulfilling the LOC (loss of control) criteria (related to the original Marcus&Kalarchian) in the PREC-BED group. Exclusion Criteria: - Intelligence quotient < 70 measured with the K-BIT. - Any comorbid psychiatric disorder, except BED in the BED group or PREC-BED in the PREC-BED group. Tobacco use and the presence of an adaptative disorder or any mild anxiety disorder will be accepted in all groups. - Traumatic brain injury or any neurological disorder. - Use of dental braces (due to important artifact in MRI). - MRI: Absolute contraindications (e.g.: metal objects), relative contraindications (claustrophobia). Anthropometric measures: Weight > 150Kg or shoulder to shoulder measurement > 70 cm. - Any severe medical conditions (including Sleep apnea-hypopnea syndrome), except for obesity and metabolic syndrome. - Not signing the informed consent. - Pregnancy for females. |
Country | Name | City | State |
---|---|---|---|
Spain | Hospital Sant Joan de Déu | Esplugues De Llobregat | Barcelona |
Lead Sponsor | Collaborator |
---|---|
Fundació Sant Joan de Déu | Instituto de Salud Carlos III |
Spain,
Adhikari MH, Griffis J, Siegel JS, Thiebaut de Schotten M, Deco G, Instabato A, Gilson M, Corbetta M. Effective connectivity extracts clinically relevant prognostic information from resting state activity in stroke. Brain Commun. 2021 Oct 23;3(4):fcab233. doi: 10.1093/braincomms/fcab233. eCollection 2021. — View Citation
American Psychiatric Association. Anxiety Disorders. In: Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association; 2013. doi:10.1176/appi.books.9780890425596.dsm05
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5th Ed.). Washington, DC; 2013.
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association; 2013. doi:10.1176/appi.books.9780890425596
Aviram-Friedman R, Astbury N, Ochner CN, Contento I, Geliebter A. Neurobiological evidence for attention bias to food, emotional dysregulation, disinhibition and deficient somatosensory awareness in obesity with binge eating disorder. Physiol Behav. 2018 Feb 1;184:122-128. doi: 10.1016/j.physbeh.2017.11.003. Epub 2017 Nov 8. — View Citation
Balantekin KN, Birch LL, Savage JS. Eating in the absence of hunger during childhood predicts self-reported binge eating in adolescence. Eat Behav. 2017 Jan;24:7-10. doi: 10.1016/j.eatbeh.2016.11.003. Epub 2016 Nov 10. — View Citation
Bartholdy S, O'Daly OG, Campbell IC, Banaschewski T, Barker G, Bokde ALW, Bromberg U, Buchel C, Quinlan EB, Desrivieres S, Flor H, Frouin V, Garavan H, Gowland P, Heinz A, Ittermann B, Martinot JL, Paillere Martinot ML, Nees F, Orfanos DP, Poustka L, Hohmann S, Frohner JH, Smolka MN, Walter H, Whelan R, Schumann G, Schmidt U; IMAGEN Consortium. Neural Correlates of Failed Inhibitory Control as an Early Marker of Disordered Eating in Adolescents. Biol Psychiatry. 2019 Jun 1;85(11):956-965. doi: 10.1016/j.biopsych.2019.01.027. Epub 2019 Mar 25. — View Citation
Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition. 1994 Apr-Jun;50(1-3):7-15. doi: 10.1016/0010-0277(94)90018-3. — View Citation
Beck JS, Beck AT, Jolly J, Steer RA, Assessment Library Materials (University of Lethbridge. Faculty of Education. Curriculum Laboratory). Beck Youth Inventories for Children and Adolescents : Manual. 2nd ed. PsychCorp; 2005.
Benítez Brito N, Pinto Robayna B, Ramallo Fariña Y, Moreno Redondo F, León Salas B, Díaz Romero C. Cross-cultural validation of the Yale Food Addiction Scale for Children (YFAS-c) into the Spanish language to assess food addiction in the pediatric population. Rev Psiquiatr Salud Ment. Published online 2021. doi:10.1016/J.RPSM.2021.11.006
Birmaher B, Khetarpal S, Brent D, Cully M, Balach L, Kaufman J, Neer SM. The Screen for Child Anxiety Related Emotional Disorders (SCARED): scale construction and psychometric characteristics. J Am Acad Child Adolesc Psychiatry. 1997 Apr;36(4):545-53. doi: 10.1097/00004583-199704000-00018. — View Citation
Bodell LP, Wildes JE, Goldschmidt AB, Lepage R, Keenan KE, Guyer AE, Hipwell AE, Stepp SD, Forbes EE. Associations Between Neural Reward Processing and Binge Eating Among Adolescent Girls. J Adolesc Health. 2018 Jan;62(1):107-113. doi: 10.1016/j.jadohealth.2017.08.006. Epub 2017 Oct 17. — View Citation
Cebolla A, Perpina C, Lurbe E, Alvarez-Pitti J, Botella C. [Prevalence of binge eating disorder among a clinical sample of obese children]. An Pediatr (Barc). 2012 Aug;77(2):98-102. doi: 10.1016/j.anpedi.2011.11.027. Epub 2012 Feb 10. Spanish. — View Citation
Chamay-Weber C, Combescure C, Lanza L, Carrard I, Haller DM. Screening Obese Adolescents for Binge Eating Disorder in Primary Care: The Adolescent Binge Eating Scale. J Pediatr. 2017 Jun;185:68-72.e1. doi: 10.1016/j.jpeds.2017.02.038. Epub 2017 Mar 10. — View Citation
Conners CK, Sitarenios G. Conners' Continuous Performance Test (CPT). In: Encyclopedia of Clinical Neuropsychology. Springer New York; 2011:681-683. doi:10.1007/978-0-387-79948-3_1535
Decaluwe V, Braet C. Prevalence of binge-eating disorder in obese children and adolescents seeking weight-loss treatment. Int J Obes Relat Metab Disord. 2003 Mar;27(3):404-9. doi: 10.1038/sj.ijo.0802233. — View Citation
Donnelly B, Touyz S, Hay P, Burton A, Russell J, Caterson I. Neuroimaging in bulimia nervosa and binge eating disorder: a systematic review. J Eat Disord. 2018 Feb 20;6:3. doi: 10.1186/s40337-018-0187-1. eCollection 2018. — View Citation
Dpto. I+D Pearson Clinical & Talent Assessment colaboración con Dña. Victoria del Barrio, D. José Pedro Espada, Dña. Eva España DñaAI y DñaMÁM. BYI-2 , Inventarios de Beck para niños y adolescentes-2 - Pearson Clinical & Talent Assessment. Accessed March 3, 2022. https://www.pearsonclinical.es/byi-2-inventarios-de-beck-para-ninos-y-adolescentes-2
Eldredge KL, Agras WS. Weight and shape overconcern and emotional eating in binge eating disorder. Int J Eat Disord. 1996 Jan;19(1):73-82. doi: 10.1002/(SICI)1098-108X(199601)19:13.0.CO;2-T. — View Citation
Endicott J, Spitzer RL, Fleiss JL, Cohen J. The global assessment scale. A procedure for measuring overall severity of psychiatric disturbance. Arch Gen Psychiatry. 1976 Jun;33(6):766-71. doi: 10.1001/archpsyc.1976.01770060086012. — View Citation
Erskine HE, Whiteford HA. Epidemiology of binge eating disorder. Curr Opin Psychiatry. 2018 Nov;31(6):462-470. doi: 10.1097/YCO.0000000000000449. — View Citation
Fairburn CG, Beglin SJ. Assessment of eating disorders: interview or self-report questionnaire? Int J Eat Disord. 1994 Dec;16(4):363-70. — View Citation
Forcadell E, Medrano L, Garcia-Delgar B, Fernandez-Martinez I, Orgiles M, Garcia C, Lazaro L, Lera-Miguel S. Psychometric Properties of the Children's Version of the Spence Children's Anxiety Scale (SCAS) in a Spanish Clinical Sample. Span J Psychol. 2020 Oct 20;23:e40. doi: 10.1017/SJP.2020.39. — View Citation
Frank GK, Shott ME, Riederer J, Pryor TL. Altered structural and effective connectivity in anorexia and bulimia nervosa in circuits that regulate energy and reward homeostasis. Transl Psychiatry. 2016 Nov 1;6(11):e932. doi: 10.1038/tp.2016.199. — View Citation
Gearhardt AN, Roberto CA, Seamans MJ, Corbin WR, Brownell KD. Preliminary validation of the Yale Food Addiction Scale for children. Eat Behav. 2013 Dec;14(4):508-12. doi: 10.1016/j.eatbeh.2013.07.002. Epub 2013 Jul 21. Erratum In: Eat Behav. 2014 Apr;15(2):334. — View Citation
Giel KE, Teufel M, Junne F, Zipfel S, Schag K. Food-Related Impulsivity in Obesity and Binge Eating Disorder-A Systematic Update of the Evidence. Nutrients. 2017 Oct 27;9(11):1170. doi: 10.3390/nu9111170. — View Citation
Golden CJ. A group version of the Stroop Color and Word Test. J Pers Assess. 1975 Aug;39(4):386-8. doi: 10.1207/s15327752jpa3904_10. — View Citation
Goldschmidt AB, Dickstein DP, MacNamara AE, Phan KL, O'Brien S, Le Grange D, Fisher JO, Keedy S. A Pilot Study of Neural Correlates of Loss of Control Eating in Children With Overweight/Obesity: Probing Intermittent Access to Food as a Means of Eliciting Disinhibited Eating. J Pediatr Psychol. 2018 Sep 1;43(8):846-855. doi: 10.1093/jpepsy/jsy009. — View Citation
Gratz KL, Roemer L. Multidimensional Assessment of Emotion Regulation and Dysregulation: Development, Factor Structure, and Initial Validation of the Difficulties in Emotion Regulation Scale 1. J Psychopathol Behav Assess. 2004;26(1).
Guerdjikova AI, Mori N, Casuto LS, McElroy SL. Update on Binge Eating Disorder. Med Clin North Am. 2019 Jul;103(4):669-680. doi: 10.1016/j.mcna.2019.02.003. — View Citation
Hagan KE, Bohon C. Subcortical brain volume and cortical thickness in adolescent girls and women with binge eating. Int J Eat Disord. 2021 Aug;54(8):1527-1536. doi: 10.1002/eat.23563. Epub 2021 Jun 1. — View Citation
Hardee JE, Phaneuf C, Cope L, Zucker R, Gearhardt A, Heitzeg M. Neural correlates of inhibitory control in youth with symptoms of food addiction. Appetite. 2020 May 1;148:104578. doi: 10.1016/j.appet.2019.104578. Epub 2020 Jan 2. — View Citation
Hebebrand J, Gearhardt AN. The concept of "food addiction" helps inform the understanding of overeating and obesity: NO. Am J Clin Nutr. 2021 Feb 2;113(2):268-273. doi: 10.1093/ajcn/nqaa344. — View Citation
Herle M, Stavola B, Hubel C, Abdulkadir M, Ferreira DS, Loos RJF, Bryant-Waugh R, Bulik CM, Micali N. A longitudinal study of eating behaviours in childhood and later eating disorder behaviours and diagnoses. Br J Psychiatry. 2020 Feb;216(2):113-119. doi: 10.1192/bjp.2019.174. — View Citation
Hervás G, Jódar R. Adaptación al castellano de la Escala de Dificultades en la Regulación Emocional The spanish version of the Difficulties in Emotion Regulation Scale. 2008;19(2):139-156.
Jarcho JM, Tanofsky-Kraff M, Nelson EE, Engel SG, Vannucci A, Field SE, Romer AL, Hannallah L, Brady SM, Demidowich AP, Shomaker LB, Courville AB, Pine DS, Yanovski JA. Neural activation during anticipated peer evaluation and laboratory meal intake in overweight girls with and without loss of control eating. Neuroimage. 2015 Mar;108:343-53. doi: 10.1016/j.neuroimage.2014.12.054. Epub 2014 Dec 27. — View Citation
Kaufman AS, Cordero Pando A, Calonge Isabel, Kaufman NL. K-BIT : test breve de inteligencia de Kaufman. Published online 2011.
Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N. Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997 Jul;36(7):980-8. doi: 10.1097/00004583-199707000-00021. — View Citation
Kjeldbjerg ML, Clausen L. Prevalence of binge-eating disorder among children and adolescents: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry. 2023 Apr;32(4):549-574. doi: 10.1007/s00787-021-01850-2. Epub 2021 Jul 27. — View Citation
Kobeleva X, Varoquaux G, Dagher A, Adhikari M, Grefkes C, Gilson M. Advancing brain network models to reconcile functional neuroimaging and clinical research. Neuroimage Clin. 2022;36:103262. doi: 10.1016/j.nicl.2022.103262. Epub 2022 Nov 7. — View Citation
Lavagnino L, Arnone D, Cao B, Soares JC, Selvaraj S. Inhibitory control in obesity and binge eating disorder: A systematic review and meta-analysis of neurocognitive and neuroimaging studies. Neurosci Biobehav Rev. 2016 Sep;68:714-726. doi: 10.1016/j.neubiorev.2016.06.041. Epub 2016 Jul 2. — View Citation
Marcus MD, Kalarchian MA. Binge eating in children and adolescents. Int J Eat Disord. 2003;34 Suppl:S47-57. doi: 10.1002/eat.10205. — View Citation
Marzilli E, Cerniglia L, Cimino S. A narrative review of binge eating disorder in adolescence: prevalence, impact, and psychological treatment strategies. Adolesc Health Med Ther. 2018 Jan 5;9:17-30. doi: 10.2147/AHMT.S148050. eCollection 2018. — View Citation
Miranda-Olivos R, Steward T, Martinez-Zalacain I, Mestre-Bach G, Juaneda-Segui A, Jimenez-Murcia S, Fernandez-Formoso JA, Vilarrasa N, Veciana de Las Heras M, Custal N, Virgili N, Lopez-Urdiales R, Menchon JM, Granero R, Soriano-Mas C, Fernandez-Aranda F. The neural correlates of delay discounting in obesity and binge eating disorder. J Behav Addict. 2021 Apr 26;10(3):498-507. doi: 10.1556/2006.2021.00023. Online ahead of print. — View Citation
Mitchison D, Touyz S, Gonzalez-Chica DA, Stocks N, Hay P. How abnormal is binge eating? 18-Year time trends in population prevalence and burden. Acta Psychiatr Scand. 2017 Aug;136(2):147-155. doi: 10.1111/acps.12735. Epub 2017 Apr 16. — View Citation
Murray SB, Alba C, Duval CJ, Nagata JM, Cabeen RP, Lee DJ, Toga AW, Siegel SJ, Jann K. Aberrant functional connectivity between reward and inhibitory control networks in pre-adolescent binge eating disorder. Psychol Med. 2023 Jul;53(9):3869-3878. doi: 10.1017/S0033291722000514. Epub 2022 Mar 18. — View Citation
Neumark-Sztainer D, Wall M, Guo J, Story M, Haines J, Eisenberg M. Obesity, disordered eating, and eating disorders in a longitudinal study of adolescents: how do dieters fare 5 years later? J Am Diet Assoc. 2006 Apr;106(4):559-68. doi: 10.1016/j.jada.2006.01.003. — View Citation
Pallares V, Insabato A, Sanjuan A, Kuhn S, Mantini D, Deco G, Gilson M. Extracting orthogonal subject- and condition-specific signatures from fMRI data using whole-brain effective connectivity. Neuroimage. 2018 Sep;178:238-254. doi: 10.1016/j.neuroimage.2018.04.070. Epub 2018 May 22. — View Citation
Perpina C, Cebolla A, Botella C, Lurbe E, Torro MI. Emotional Eating Scale for children and adolescents: psychometric characteristics in a Spanish sample. J Clin Child Adolesc Psychol. 2011;40(3):424-33. doi: 10.1080/15374416.2011.563468. — View Citation
Rapuano KM, Laurent JS, Hagler DJ Jr, Hatton SN, Thompson WK, Jernigan TL, Dale AM, Casey BJ, Watts R. Nucleus accumbens cytoarchitecture predicts weight gain in children. Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26977-26984. doi: 10.1073/pnas.2007918117. Epub 2020 Oct 12. — View Citation
Reitan RM. Trail Making Test. Manual for Administration, Scoring, and Interpretation. . : Indiana University Press.; 1956.
Rodriguez IT, Ballart JF, Pastor GC, Jorda EB, Val VA. [Validation of a short questionnaire on frequency of dietary intake: reproducibility and validity]. Nutr Hosp. 2008 May-Jun;23(3):242-52. Spanish. — View Citation
Rolls ET, Cheng W, Gilson M, Gong W, Deco G, Lo CZ, Yang AC, Tsai SJ, Liu ME, Lin CP, Feng J. Beyond the disconnectivity hypothesis of schizophrenia. Cereb Cortex. 2020 Mar 14;30(3):1213-1233. doi: 10.1093/cercor/bhz161. — View Citation
Santomauro DF, Melen S, Mitchison D, Vos T, Whiteford H, Ferrari AJ. The hidden burden of eating disorders: an extension of estimates from the Global Burden of Disease Study 2019. Lancet Psychiatry. 2021 Apr;8(4):320-328. doi: 10.1016/S2215-0366(21)00040-7. Epub 2021 Mar 3. — View Citation
Sepulveda AR, Compte EJ, Faya M, Villasenor A, Gutierrez S, Andres P, Graell M. Spanish validation of the Eating Disorder Examination Questionnaire for Adolescents (EDE-Q-A): confirmatory factor analyses among a clinical sample. Eat Disord. 2019 Nov-Dec;27(6):565-576. doi: 10.1080/10640266.2019.1567154. Epub 2019 Feb 13. — View Citation
Shapiro JR, Woolson SL, Hamer RM, Kalarchian MA, Marcus MD, Bulik CM. Evaluating binge eating disorder in children: development of the children's binge eating disorder scale (C-BEDS). Int J Eat Disord. 2007 Jan;40(1):82-9. doi: 10.1002/eat.20318. — View Citation
Silverman MH, Krueger RF, Iacono WG, Malone SM, Hunt RH, Thomas KM. Quantifying familial influences on brain activation during the monetary incentive delay task: an adolescent monozygotic twin study. Biol Psychol. 2014 Dec;103:7-14. doi: 10.1016/j.biopsycho.2014.07.016. Epub 2014 Aug 4. — View Citation
Smink FR, van Hoeken D, Oldehinkel AJ, Hoek HW. Prevalence and severity of DSM-5 eating disorders in a community cohort of adolescents. Int J Eat Disord. 2014 Sep;47(6):610-9. doi: 10.1002/eat.22316. Epub 2014 Jun 5. — View Citation
Stice E, Marti CN, Rohde P. Prevalence, incidence, impairment, and course of the proposed DSM-5 eating disorder diagnoses in an 8-year prospective community study of young women. J Abnorm Psychol. 2013 May;122(2):445-57. doi: 10.1037/a0030679. Epub 2012 Nov 12. — View Citation
Sysko R, Walsh BT, Fairburn CG. Eating Disorder Examination-Questionnaire as a measure of change in patients with bulimia nervosa. Int J Eat Disord. 2005 Mar;37(2):100-6. doi: 10.1002/eat.20078. — View Citation
Tanofsky-Kraff M, Marcus MD, Yanovski SZ, Yanovski JA. Loss of control eating disorder in children age 12 years and younger: proposed research criteria. Eat Behav. 2008 Aug;9(3):360-5. doi: 10.1016/j.eatbeh.2008.03.002. Epub 2008 Apr 7. — View Citation
Tanofsky-Kraff M, Shomaker LB, Olsen C, Roza CA, Wolkoff LE, Columbo KM, Raciti G, Zocca JM, Wilfley DE, Yanovski SZ, Yanovski JA. A prospective study of pediatric loss of control eating and psychological outcomes. J Abnorm Psychol. 2011 Feb;120(1):108-18. doi: 10.1037/a0021406. — View Citation
Tanofsky-Kraff M, Theim KR, Yanovski SZ, Bassett AM, Burns NP, Ranzenhofer LM, Glasofer DR, Yanovski JA. Validation of the emotional eating scale adapted for use in children and adolescents (EES-C). Int J Eat Disord. 2007 Apr;40(3):232-40. doi: 10.1002/eat.20362. — View Citation
Torrubia R, Avila C, Molto J, et al. The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray's anxiety and impulsivity dimensions. Pers Individ Dif. 2001;31(6):834-862. doi:10.1016/S0191-8869(00)00183-5
Treasure J, Duarte TA, Schmidt U. Eating disorders. Lancet. 2020 Mar 14;395(10227):899-911. doi: 10.1016/S0140-6736(20)30059-3. — View Citation
Turan S, Sarioglu FC, Erbas IM, Cavusoglu B, Karagoz E, Sisman AR, Guney SA, Guleryuz H, Abaci A, Ozturk Y, Akay AP. Altered regional grey matter volume and appetite-related hormone levels in adolescent obesity with or without binge-eating disorder. Eat Weight Disord. 2021 Dec;26(8):2555-2562. doi: 10.1007/s40519-021-01117-4. Epub 2021 Feb 6. — View Citation
Vainik U, Neseliler S, Konstabel K, Fellows LK, Dagher A. Eating traits questionnaires as a continuum of a single concept. Uncontrolled eating. Appetite. 2015 Jul;90:229-39. doi: 10.1016/j.appet.2015.03.004. Epub 2015 Mar 10. — View Citation
van Wijnen LG, Boluijt PR, Hoeven-Mulder HB, Bemelmans WJ, Wendel-Vos GC. Weight status, psychological health, suicidal thoughts, and suicide attempts in Dutch adolescents: results from the 2003 E-MOVO project. Obesity (Silver Spring). 2010 May;18(5):1059-61. doi: 10.1038/oby.2009.334. Epub 2009 Oct 8. — View Citation
Vannucci A, Nelson EE, Bongiorno DM, Pine DS, Yanovski JA, Tanofsky-Kraff M. Behavioral and neurodevelopmental precursors to binge-type eating disorders: support for the role of negative valence systems. Psychol Med. 2015 Oct;45(14):2921-36. doi: 10.1017/S003329171500104X. Epub 2015 Jun 4. — View Citation
Wechsler D. WISC-V, Escala de Inteligencia de Wechsler Para Niños-V - Pearson Clinical & Talent Assessment. (NCS Pearson Inc. (Pearson Assessment)., ed.).; 2014.
Wierenga CE, Ely A, Bischoff-Grethe A, Bailer UF, Simmons AN, Kaye WH. Are Extremes of Consumption in Eating Disorders Related to an Altered Balance between Reward and Inhibition? Front Behav Neurosci. 2014 Dec 9;8:410. doi: 10.3389/fnbeh.2014.00410. eCollection 2014. — View Citation
Xue G, Chen C, Lu ZL, Dong Q. Brain Imaging Techniques and Their Applications in Decision-Making Research. Xin Li Xue Bao. 2010 Feb 3;42(1):120-137. doi: 10.3724/SP.J.1041.2010.00120. — View Citation
* Note: There are 72 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Neuroimaging assessment | Connectivity analyses using Effective-connectivity (EC) in whole-brain models | Baseline (transversal design) | |
Primary | Neuroimaging assessment | Brain response during task-based fMRI (Monetary incentive Delay Task, Stop Signal task) | Baseline (transversal design) | |
Secondary | Height | Height in centimeters | Baseline and 1-year follow-up (for the HG and PREC-BED groups). | |
Secondary | Weight | Weight in kilograms | Baseline and 1-year follow-up (for the HG and PREC-BED groups). | |
Secondary | Waist perimeter | Waist perimeter in centimeters | Baseline and 1-year follow-up (for the HG and PREC-BED groups). | |
Secondary | BMI | Weight and height will be combined to report BMI in kg/m^2 | Baseline and 1-year follow-up (for the HG and PREC-BED groups). | |
Secondary | Blood pressure | Blood pressure in mm Hg | Baseline and 1-year follow-up (for the HG and PREC-BED groups). | |
Secondary | Fasting glucose | Fasting glucose in mg/dl | Baseline and 1-year follow-up (for the HG and PREC-BED groups). | |
Secondary | Triglycerides | Triglycerides in mg/dl | Baseline and 1-year follow-up (for the HG and PREC-BED groups). | |
Secondary | HDL cholesterol | HDL cholesterol in mg/dl | Baseline and 1-year follow-up (for the HG and PREC-BED groups). | |
Secondary | Developmental Tanner stage | The scale defines physical measurements of development based on external primary and secondary sex characteristics. | Baseline and 1-year follow-up (for the HG and PREC-BED groups). | |
Secondary | Adherence to Mediterranean diet | Self-administered questionnaire (The Kid-MED). Units on a Scale: Total score from 0 to 12. Score =8: Optimal dietary quality.
Score 4-7: Intermediate dietary quality. Improvements are needed to enhance adherence to the MedDiet. Score =3: Very low dietary quality. |
Baseline and 1-year follow-up (for the HG and PREC-BED groups). | |
Secondary | Diagnosis of BED, and PREC-BED or exclusion of other DMS-5 diagnosis. | The Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS-PL): semi-structured interview to parents or legal guardians and subjects aimed to diagnosis mental disorders based on DMS-5 criteria, administered by health care providers (clinician). | Baseline and 1-year follow-up (for the HG and PREC-BED groups) | |
Secondary | Functioning | Global Assessment of Functioning (GAF) Scale (clinician). Units on a scale: 11 to 100, higher scores will indicate a better outcome. | Baseline and 1-year follow-up (for the HG and PREC-BED groups) | |
Secondary | Depression | Beck Depression Inventory for Children (BYI-2): Spanish adapted self-administered questionnaire for depressive symptoms (child)
T-scores: =70 Very high 60-69 Quite high 55-59 Somewhat high <55 Average |
Baseline and 1-year follow-up (for the HG and PREC-BED groups) | |
Secondary | Anxiety | The Screen for Child Anxiety Related Disorders (SCARED). A total score of 25 may indicate the presence of an anxiety disorder. Scores higher than 30 are more specific. | Baseline and 1-year follow-up (for the HG and PREC-BED groups). | |
Secondary | Emotion Regulation | Difficulties Emotion Regulation Scale (DERS): Subscales and total scores are obtained by the sum of the corresponding items and higher scores indicate more difficulties in Emotional Regulation. | Baseline and 1-year follow-up (for the HG and PREC-BED groups) | |
Secondary | Eating symptomatology | Eating Disorder Examination Questionnaire-Adolescents (EDE-Q-A): It generates three scales a) the Restraint subscale, b) the Weight, Figure and Eating Concern subscale, and c) the Total scale. Higher scores mean a worse outcome. | Baseline and 1-year follow-up (for the HG and PREC-BED groups) | |
Secondary | Eating symptomatology | - Emotional Eating Scale Adapted for Children and Adolescents (EES-C): It generates subscales (anger, anxiety, depression, restlessness and hopelessness). higher scores mean a worse outcome | Baseline and 1-year follow-up (for the HG and PREC-BED groups) | |
Secondary | Temperamental tendencies for sensitivity to punishment and sensitivity to reward. | The Sensitivity to Punishment and Sensitivity to Reward Questionnaire Junior (SPSRQ-J). It generates two subscales sensitivity to punishment and sensitivity to reward. | Baseline and 1-year follow-up (for the HG and PREC-BED groups) | |
Secondary | Food Addiction | Yale Food Addiction Scale for Children (YFAS-C): The scores provide an assessment of food addiction in two different ways. On one hand, the "symptom count," which offers a scoring version reflecting the number of dependency symptoms based on the 7 described criteria without considering clinical importance in the scoring (minimum 0, maximum 7 points). And, on the other hand, the "addiction diagnosis," which evaluates whether the diagnosis of food addiction can be established or not, and is confirmed when there are three or more symptoms present and significant clinical distress or impairment (questions 15 and 16). | Baseline and 1-year follow-up (for the HG and PREC-BED groups) | |
Secondary | Food intake | Questionnaire on frequency of dietary intake (CFCA): The NOVA classification will be used to extract information of the intake of ultra-processed foods and drinks for each subject (daily grams of UPFD intake/total daily grams, multiplied by 100) for each participant (world.openfoodfacts.org). | Baseline and 1-year follow-up (for the HG and PREC-BED groups) | |
Secondary | General Intelligence | Kaufman Brief Intelligence Test (K-BIT): Standard scores have a mean of 100 and a standard deviation of 15 | Baseline | |
Secondary | Attention ability | Continuous Performance Test (CPT-IP). T-score: The values of the scores depend on the variables. | Baseline | |
Secondary | Visuo-constructional ability and visual memory | Rey-Osterrieth complex figures task. Standardized scores: higher scores mean a better outcome. | Baseline | |
Secondary | Executive function: cognitive flexibility, alternating attention, sequencing, visual search, and motor speed. | Trail Making Test (TMT). Standardized scores: higher scores mean a better outcome. | Baseline. | |
Secondary | Executive function: working memory ability | Letter-number sequencing (subtest of the Wechsler Intelligence Scale for Children-Fifth Edition - WISC-V).
Standardized scores: higher scores mean a better outcome. |
Baseline. | |
Secondary | Executive function: decision-making abilities reward based | Iowa gambling task Standardized scores: higher scores mean a better outcome. | Baseline. | |
Secondary | Executive function: ability to inhibit cognitive interference | Stroop Test. Standardized scores: higher scores mean a better outcome. | Baseline. | |
Secondary | Executive function: planning and strategic organisation | Rey-Osterrieth complex figures task. Standardized scores: higher scores mean a better outcome. | Baseline. |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04243317 -
Feasibility of a Sleep Improvement Intervention for Weight Loss and Its Maintenance in Sleep Impaired Obese Adults
|
N/A | |
Recruiting |
NCT04101669 -
EndoBarrier System Pivotal Trial(Rev E v2)
|
N/A | |
Terminated |
NCT03772886 -
Reducing Cesarean Delivery Rate in Obese Patients Using the Peanut Ball
|
N/A | |
Completed |
NCT03640442 -
Modified Ramped Position for Intubation of Obese Females.
|
N/A | |
Completed |
NCT04506996 -
Monday-Focused Tailored Rapid Interactive Mobile Messaging for Weight Management 2
|
N/A | |
Recruiting |
NCT06019832 -
Analysis of Stem and Non-Stem Tibial Component
|
N/A | |
Active, not recruiting |
NCT05891834 -
Study of INV-202 in Patients With Obesity and Metabolic Syndrome
|
Phase 2 | |
Active, not recruiting |
NCT05275959 -
Beijing (Peking)---Myopia and Obesity Comorbidity Intervention (BMOCI)
|
N/A | |
Recruiting |
NCT04575194 -
Study of the Cardiometabolic Effects of Obesity Pharmacotherapy
|
Phase 4 | |
Completed |
NCT04513769 -
Nutritious Eating With Soul at Rare Variety Cafe
|
N/A | |
Withdrawn |
NCT03042897 -
Exercise and Diet Intervention in Promoting Weight Loss in Obese Patients With Stage I Endometrial Cancer
|
N/A | |
Completed |
NCT03644524 -
Heat Therapy and Cardiometabolic Health in Obese Women
|
N/A | |
Recruiting |
NCT05917873 -
Metabolic Effects of Four-week Lactate-ketone Ester Supplementation
|
N/A | |
Active, not recruiting |
NCT04353258 -
Research Intervention to Support Healthy Eating and Exercise
|
N/A | |
Completed |
NCT04507867 -
Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III
|
N/A | |
Recruiting |
NCT03227575 -
Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control
|
N/A | |
Completed |
NCT01870947 -
Assisted Exercise in Obese Endometrial Cancer Patients
|
N/A | |
Recruiting |
NCT06007404 -
Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
|
||
Recruiting |
NCT05972564 -
The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function
|
Phase 1/Phase 2 | |
Recruiting |
NCT05371496 -
Cardiac and Metabolic Effects of Semaglutide in Heart Failure With Preserved Ejection Fraction
|
Phase 2 |