Clinical Trials Logo

Clinical Trial Summary

There is an ongoing and worsening problem with obesity in the developed, and much of the developing world. Although it has long been realized that Western diets that are rich in sugar and fat play an important role in this, it has only recently been realized that exposure to these diets, particularly in childhood, can damage the part of the brain that determines how much fat there is in the body. The result of this damage is that the so-called "set-point" for fat in this part of the brain is pushed upwards. There is a lot of evidence from animals that activating the brain's balance (vestibular) system pushes this set-point for fat downwards to cause fat loss, probably because this "tricks" the brain into thinking that there is increased physical activity. The aim of this study is to see whether non-invasive electrical stimulation of the vestibular system in human participants causes a change in metabolism of fat and/or energy expenditure, which, if regulated upwards, would suggest this could be used as a means of reducing body fat in humans.


Clinical Trial Description

There is a growing realization that obesity can, in many ways, be viewed as a neurological disease triggered by lifestyle factors. There is clear evidence that the central melanocortin system, which is centered in the arcuate nucleus of the hypothalamus, regulates a "set-point" for how much fat the body should have. It does so by altering appetite and metabolic rate so that deviations too far in either direction are strongly resisted. This set-point is determined by genetic, epigenetic and lifestyle factors. Thus, excessive exposure to dietary monosaccharides, such as glucose, and saturated fats, especially in childhood and adolescence, can damage the neurons of the arcuate nucleus and push the set-point up. This then can condemn sufferers to a lifetime of obesity, despite individual efforts to combat it using diet and/or exercise.

Establishing a method of tuning down the set-point for body fat thus has to be a goal if the current obesity pandemic is to be successfully combatted. A significant amount of animal work suggests that stimulating the vestibular system in the inner ear, by means of chronic centrifugation, actually does just that and causes a reduction in body fat. This is likely because chronic vestibular activation is taken by the brain to represent a state of increased physical activity, and in order to optimize homeostasis it would be appropriate for the body to have a leaner physique, by reducing unnecessary energy expenditure from carrying excess fat.

It is possible to stimulate the vestibular nerve in humans by applying a small electrical current to the skin behind the ears. This is an established technology that is believed to be safe, but only previously used for research purposes. The investigators found in a pilot study that recurrent stimulation of this kind for two or three hours a week over four months led to a statistically significant reduction in truncal fat in the active group as opposed to the control group who underwent sham stimulation.

Given the current, and increasing levels of global obesity, it is important to determine whether non-invasive electrical vestibular nerve stimulation (VeNS), otherwise known as galvanic vestibular stimulation (GVS), is a viable treatment option, since if it were this would be of significant scientific importance.

The investigators wish to use the technique of indirect calorimetry to explore this. This involves wearing a tight face mask to collect all inspired oxygen and expired carbon dioxide and using formulae to calculate total energy expenditure and the component of metabolism that is derived from fat as compared to carbohydrate. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03138382
Study type Interventional
Source University of California, San Diego
Contact
Status Completed
Phase N/A
Start date August 25, 2017
Completion date March 1, 2018

See also
  Status Clinical Trial Phase
Recruiting NCT04101669 - EndoBarrier System Pivotal Trial(Rev E v2) N/A
Recruiting NCT04243317 - Feasibility of a Sleep Improvement Intervention for Weight Loss and Its Maintenance in Sleep Impaired Obese Adults N/A
Terminated NCT03772886 - Reducing Cesarean Delivery Rate in Obese Patients Using the Peanut Ball N/A
Completed NCT03640442 - Modified Ramped Position for Intubation of Obese Females. N/A
Completed NCT04506996 - Monday-Focused Tailored Rapid Interactive Mobile Messaging for Weight Management 2 N/A
Recruiting NCT06019832 - Analysis of Stem and Non-Stem Tibial Component N/A
Active, not recruiting NCT05891834 - Study of INV-202 in Patients With Obesity and Metabolic Syndrome Phase 2
Active, not recruiting NCT05275959 - Beijing (Peking)---Myopia and Obesity Comorbidity Intervention (BMOCI) N/A
Recruiting NCT04575194 - Study of the Cardiometabolic Effects of Obesity Pharmacotherapy Phase 4
Completed NCT04513769 - Nutritious Eating With Soul at Rare Variety Cafe N/A
Withdrawn NCT03042897 - Exercise and Diet Intervention in Promoting Weight Loss in Obese Patients With Stage I Endometrial Cancer N/A
Completed NCT03644524 - Heat Therapy and Cardiometabolic Health in Obese Women N/A
Recruiting NCT05917873 - Metabolic Effects of Four-week Lactate-ketone Ester Supplementation N/A
Active, not recruiting NCT04353258 - Research Intervention to Support Healthy Eating and Exercise N/A
Completed NCT04507867 - Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III N/A
Recruiting NCT03227575 - Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control N/A
Completed NCT01870947 - Assisted Exercise in Obese Endometrial Cancer Patients N/A
Recruiting NCT06007404 - Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
Recruiting NCT05972564 - The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function Phase 1/Phase 2
Recruiting NCT05371496 - Cardiac and Metabolic Effects of Semaglutide in Heart Failure With Preserved Ejection Fraction Phase 2