Obesity Clinical Trial
— ColumbusOfficial title:
Identification of Novel Skeletal Muscle-derived Factors That Promote Lipid Oxidation in Both Skeletal Muscle and Adipose Tissue
Verified date | February 2024 |
Source | AdventHealth Translational Research Institute |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The purpose of this study is to collect data to help researchers identify factors, such as certain proteins or genetic codes, that are secreted from muscle that are associated with the beneficial effects of exercise.
Status | Active, not recruiting |
Enrollment | 56 |
Est. completion date | June 2024 |
Est. primary completion date | December 2014 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 40 Years |
Eligibility | Inclusion Criteria: Applicable to all Groups - Healthy men and women, aged 18 - 40, inclusive. - Willing to stop alcohol and caffeine consumption for 48 hours preceding each blood draw Applicable to Group 1 - BMI between 22 and 29.9 kg/m2 - Not involved in regular exercise program - Willing to exercise every day for the study period Applicable to Group 2 - BMI between 22 and 29.9 kg/m2 - Maximal oxygen uptake (VO2max) = 45 ml/kg fat-free mass /min - Engaged in a minimum of 1.5 h of moderate to vigorous intensity aerobic exercise 3 times/ week Applicable to Group 3 - BMI = 30 kg/m2 and weight = 350 lbs - Not involved in a regular exercise program Exclusion Criteria: Applicable to All Groups - History of Type 2 Diabetes - "Unfavorable anatomy" for continuous venous blood sample collection - Abnormal resting ECG - Significant renal, cardiac, liver, lung, or neurological disease (controlled hypertension is acceptable if baseline bp < 140/90 on medications) - Use of drugs known to affect energy metabolism or body weight: including, but not limited to: orlistat, sibutramine, ephedrine, phenylpropanolamine, corticosterone, etc - Current treatment with blood thinners or anti-platelet medications that cannot be safely stopped for testing procedures - New onset (<3 months on a stable regime) use of oral contraceptives or hormone replacement therapy - Alcohol or other drug abuse - Smoking within the past 3 months - Females that are currently or have been pregnant or are currently or have nursed a child within the last 12 months (minimum). - Parental enrollment into the study that compromises the well being of the child [no partner or connected caregiver] - Unwilling or unable to abstain from caffeine or alcohol 48 hours prior to metabolic rate measurements - Increased liver function tests - Metal objects that would interfere with the measurement of body composition /magnetic resonance spectroscopy such as implanted rods, surgical clips, etc - Any New York Heart Association class of congestive heart failure - History of deep vein thrombosis or pulmonary embolism - Significant varicose veins - Abnormal blood count/Anemia, or blood donation within the last 2 months - Major surgery on the abdomen, pelvis, or lower extremities within previous 3 months - Bariatric surgery or liposuction within the previous 3 years - Cancer (active malignancy with or without concurrent chemotherapy) - Rheumatoid disease - Bypass graft in limb - Known genetic factor (Factor V Leiden, etc) or hypercoagulable state - Diagnosed peripheral arterial or vascular disease, or intermittent claudication - Family history of primary deep vein thrombosis or pulmonary embolism - Peripheral neuropathy - Claustrophobia - Frequent nocturnal urination and/or sleep apnea - Presence of any condition that, in the opinion of the investigator, compromises participant safety or data integrity or the participants' ability to complete the training protocol Applicable to Group 2 - Gait problems - Major Depression - Presence of an eating disorder or eating attitudes/behaviors that could interfere with the study completion - Unwilling or unable to complete the protocol Applicable to Group 3 - HbA1c = 6.5% (O) |
Country | Name | City | State |
---|---|---|---|
United States | Translational Research Institute for Metabolism and Diabetes | Orlando | Florida |
Lead Sponsor | Collaborator |
---|---|
AdventHealth Translational Research Institute | Sanford-Burnham Medical Research Institute, Takeda |
United States,
Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, Yoshikawa T. The microRNA miR-696 regulates PGC-1alpha in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab. 2010 Apr;298(4):E799-806. doi: 10.1152/ajpendo.00448.2009. Epub 2010 Jan 19. — View Citation
Arner P, Pettersson A, Mitchell PJ, Dunbar JD, Kharitonenkov A, Ryden M. FGF21 attenuates lipolysis in human adipocytes - a possible link to improved insulin sensitivity. FEBS Lett. 2008 May 28;582(12):1725-30. doi: 10.1016/j.febslet.2008.04.038. Epub 2008 May 5. — View Citation
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007 Jun;5(6):426-37. doi: 10.1016/j.cmet.2007.05.002. — View Citation
Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, Wang TJ, Chan SY. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol. 2011 Aug 15;589(Pt 16):3983-94. doi: 10.1113/jphysiol.2011.213363. Epub 2011 Jun 20. — View Citation
Blei ML, Conley KE, Kushmerick MJ. Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol. 1993 Jun;465:203-22. doi: 10.1113/jphysiol.1993.sp019673. Erratum In: J Physiol (Lond) 1994 Mar 15;475(3):548. — View Citation
Bogacka I, Ukropcova B, McNeil M, Gimble JM, Smith SR. Structural and functional consequences of mitochondrial biogenesis in human adipocytes in vitro. J Clin Endocrinol Metab. 2005 Dec;90(12):6650-6. doi: 10.1210/jc.2005-1024. Epub 2005 Oct 4. — View Citation
Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012 Jan 11;481(7382):463-8. doi: 10.1038/nature10777. — View Citation
Boutz PL, Chawla G, Stoilov P, Black DL. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 2007 Jan 1;21(1):71-84. doi: 10.1101/gad.1500707. — View Citation
Camera DM, Anderson MJ, Hawley JA, Carey AL. Short-term endurance training does not alter the oxidative capacity of human subcutaneous adipose tissue. Eur J Appl Physiol. 2010 May;109(2):307-16. doi: 10.1007/s00421-010-1356-3. Epub 2010 Jan 19. — View Citation
Chan SY, Loscalzo J. MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle. 2010 Mar 15;9(6):1072-83. doi: 10.4161/cc.9.6.11006. Epub 2010 Mar 15. — View Citation
Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006 Feb;38(2):228-33. doi: 10.1038/ng1725. Epub 2005 Dec 25. — View Citation
Chesley A, Heigenhauser GJ, Spriet LL. Regulation of muscle glycogen phosphorylase activity following short-term endurance training. Am J Physiol. 1996 Feb;270(2 Pt 1):E328-35. doi: 10.1152/ajpendo.1996.270.2.E328. — View Citation
Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO. Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Gerontol. 1992 May;47(3):B71-6. doi: 10.1093/geronj/47.3.b71. — View Citation
Conley KE, Amara CE, Bajpeyi S, Costford SR, Murray K, Jubrias SA, Arakaki L, Marcinek DJ, Smith SR. Higher mitochondrial respiration and uncoupling with reduced electron transport chain content in vivo in muscle of sedentary versus active subjects. J Clin Endocrinol Metab. 2013 Jan;98(1):129-36. doi: 10.1210/jc.2012-2967. Epub 2012 Nov 12. — View Citation
Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. J Physiol. 2000 Jul 1;526 Pt 1(Pt 1):203-10. doi: 10.1111/j.1469-7793.2000.t01-1-00203.x. Erratum In: J Physiol 2001 Jun 15;533 Pt 3:921. — View Citation
Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008 Dec;149(12):6018-27. doi: 10.1210/en.2008-0816. Epub 2008 Aug 7. — View Citation
Costford SR, Bajpeyi S, Pasarica M, Albarado DC, Thomas SC, Xie H, Church TS, Jubrias SA, Conley KE, Smith SR. Skeletal muscle NAMPT is induced by exercise in humans. Am J Physiol Endocrinol Metab. 2010 Jan;298(1):E117-26. doi: 10.1152/ajpendo.00318.2009. Epub 2009 Nov 3. — View Citation
Dang CV. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res. 2010 Feb 1;70(3):859-62. doi: 10.1158/0008-5472.CAN-09-3556. Epub 2010 Jan 19. — View Citation
Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, Timmons JA, Phillips SM. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol (1985). 2011 Feb;110(2):309-17. doi: 10.1152/japplphysiol.00901.2010. Epub 2010 Oct 28. — View Citation
Davidson-Moncada J, Papavasiliou FN, Tam W. MicroRNAs of the immune system: roles in inflammation and cancer. Ann N Y Acad Sci. 2010 Jan;1183:183-94. doi: 10.1111/j.1749-6632.2009.05121.x. — View Citation
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351-79. doi: 10.1146/annurev-biochem-060308-103103. — View Citation
Flynt AS, Li N, Thatcher EJ, Solnica-Krezel L, Patton JG. Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet. 2007 Feb;39(2):259-63. doi: 10.1038/ng1953. Epub 2007 Jan 14. — View Citation
Freyssenet D. Energy sensing and regulation of gene expression in skeletal muscle. J Appl Physiol (1985). 2007 Feb;102(2):529-40. doi: 10.1152/japplphysiol.01126.2005. Epub 2006 Nov 2. — View Citation
Goodman MN. Tumor necrosis factor induces skeletal muscle protein breakdown in rats. Am J Physiol. 1991 May;260(5 Pt 1):E727-30. doi: 10.1152/ajpendo.1991.260.5.E727. — View Citation
Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics. 2010 Nov;9(11):2482-96. doi: 10.1074/mcp.M110.002113. Epub 2010 Jul 14. — View Citation
Hoppeler H, Luthi P, Claassen H, Weibel ER, Howald H. The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch. 1973 Nov 28;344(3):217-32. doi: 10.1007/BF00588462. No abstract available. — View Citation
Horowitz JF, Leone TC, Feng W, Kelly DP, Klein S. Effect of endurance training on lipid metabolism in women: a potential role for PPARalpha in the metabolic response to training. Am J Physiol Endocrinol Metab. 2000 Aug;279(2):E348-55. doi: 10.1152/ajpendo.2000.279.2.E348. — View Citation
Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007 Jun;5(6):415-25. doi: 10.1016/j.cmet.2007.05.003. — View Citation
Jubrias SA, Crowther GJ, Shankland EG, Gronka RK, Conley KE. Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J Physiol. 2003 Dec 1;553(Pt 2):589-99. doi: 10.1113/jphysiol.2003.045872. Epub 2003 Sep 26. — View Citation
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005 Jun;115(6):1627-35. doi: 10.1172/JCI23606. Epub 2005 May 2. — View Citation
Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB, Etgen GJ. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007 Feb;148(2):774-81. doi: 10.1210/en.2006-1168. Epub 2006 Oct 26. — View Citation
Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A. Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol. 2006 Aug 28;174(5):677-87. doi: 10.1083/jcb.200603008. Epub 2006 Aug 21. — View Citation
Kim J, Heshka S, Gallagher D, Kotler DP, Mayer L, Albu J, Shen W, Freda PU, Heymsfield SB. Intermuscular adipose tissue-free skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in adults. J Appl Physiol (1985). 2004 Aug;97(2):655-60. doi: 10.1152/japplphysiol.00260.2004. Epub 2004 Apr 16. — View Citation
Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, Fischer CP, Lindegaard B, Petersen AM, Taudorf S, Secher NH, Pilegaard H, Bruunsgaard H, Pedersen BK. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia. 2007 Feb;50(2):431-8. doi: 10.1007/s00125-006-0537-4. Epub 2006 Dec 7. — View Citation
Larsen RG, Callahan DM, Foulis SA, Kent-Braun JA. In vivo oxidative capacity varies with muscle and training status in young adults. J Appl Physiol (1985). 2009 Sep;107(3):873-9. doi: 10.1152/japplphysiol.00260.2009. Epub 2009 Jun 25. — View Citation
Lee MS, Choi SE, Ha ES, An SY, Kim TH, Han SJ, Kim HJ, Kim DJ, Kang Y, Lee KW. Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-kappaB. Metabolism. 2012 Aug;61(8):1142-51. doi: 10.1016/j.metabol.2012.01.012. Epub 2012 Mar 6. — View Citation
Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL, Reid MB. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J. 2005 Mar;19(3):362-70. doi: 10.1096/fj.04-2364com. — View Citation
Lowell BB. PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell. 1999 Oct 29;99(3):239-42. doi: 10.1016/s0092-8674(00)81654-2. No abstract available. — View Citation
Lundasen T, Hunt MC, Nilsson LM, Sanyal S, Angelin B, Alexson SE, Rudling M. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun. 2007 Aug 24;360(2):437-40. doi: 10.1016/j.bbrc.2007.06.068. Epub 2007 Jun 21. — View Citation
Luquet S, Lopez-Soriano J, Holst D, Fredenrich A, Melki J, Rassoulzadegan M, Grimaldi PA. Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability. FASEB J. 2003 Dec;17(15):2299-301. doi: 10.1096/fj.03-0269fje. Epub 2003 Oct 2. — View Citation
MacIntyre DL, Sorichter S, Mair J, Berg A, McKenzie DC. Markers of inflammation and myofibrillar proteins following eccentric exercise in humans. Eur J Appl Physiol. 2001 Mar;84(3):180-6. doi: 10.1007/s004210170002. — View Citation
Mahoney DJ, Parise G, Melov S, Safdar A, Tarnopolsky MA. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J. 2005 Sep;19(11):1498-500. doi: 10.1096/fj.04-3149fje. Epub 2005 Jun 28. — View Citation
Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K, Zierath JR, Chibalin AV, Moller DE, Kharitonenkov A, Krook A. Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev. 2011 Mar;27(3):286-97. doi: 10.1002/dmrr.1177. — View Citation
Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, Akerstrom T, Yfanti C, Broholm C, Mortensen OH, Penkowa M, Hojman P, Zankari A, Watt MJ, Bruunsgaard H, Pedersen BK, Febbraio MA. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009 Jul;52(7):1409-18. doi: 10.1007/s00125-009-1364-1. Epub 2009 Apr 22. Erratum In: Diabetologia. 2012 Mar;55(3):864. Diabetologia. 2015 Apr;58(4):854-5. — View Citation
McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol (1985). 2007 Jan;102(1):306-13. doi: 10.1152/japplphysiol.00932.2006. Epub 2006 Sep 28. — View Citation
McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997 May 1;387(6628):83-90. doi: 10.1038/387083a0. — View Citation
McPherron AC, Lee SJ. Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest. 2002 Mar;109(5):595-601. doi: 10.1172/JCI13562. — View Citation
Mendham AE, Donges CE, Liberts EA, Duffield R. Effects of mode and intensity on the acute exercise-induced IL-6 and CRP responses in a sedentary, overweight population. Eur J Appl Physiol. 2011 Jun;111(6):1035-45. doi: 10.1007/s00421-010-1724-z. Epub 2010 Nov 19. — View Citation
Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R. Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol. 2001 Oct;38(4):947-54. doi: 10.1016/s0735-1097(01)01460-7. — View Citation
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10513-8. doi: 10.1073/pnas.0804549105. Epub 2008 Jul 28. — View Citation
Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol. 2006 Mar;8(3):278-84. doi: 10.1038/ncb1373. Epub 2006 Feb 19. — View Citation
Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Metab. 2007 Oct;32(5):833-9. doi: 10.1139/H07-054. — View Citation
Nielsen S, Scheele C, Yfanti C, Akerstrom T, Nielsen AR, Pedersen BK, Laye MJ. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 2010 Oct 15;588(Pt 20):4029-37. doi: 10.1113/jphysiol.2010.189860. Erratum In: J Physiol. 2011 Mar 1;589(Pt 5):1239. Laye, Matthew [corrected to Laye, Matthew J]. J Physiol. 2015 Mar 1;593(5):1323. — View Citation
Nieman DC, Davis JM, Henson DA, Walberg-Rankin J, Shute M, Dumke CL, Utter AC, Vinci DM, Carson JA, Brown A, Lee WJ, McAnulty SR, McAnulty LS. Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol (1985). 2003 May;94(5):1917-25. doi: 10.1152/japplphysiol.01130.2002. Epub 2003 Jan 17. — View Citation
Nieman DC, Henson DA, Gojanovich G, Davis JM, Murphy EA, Mayer EP, Pearce S, Dumke CL, Utter AC, McAnulty SR, McAnulty LS. Influence of carbohydrate on immune function following 2 h cycling. Res Sports Med. 2006 Jul-Sep;14(3):225-37. doi: 10.1080/15438620600854793. — View Citation
Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil. 2008 Jun;15(3):239-46. doi: 10.1097/HJR.0b013e3282f55e09. — View Citation
Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008 Oct;88(4):1379-406. doi: 10.1152/physrev.90100.2007. — View Citation
Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012 Apr 3;8(8):457-65. doi: 10.1038/nrendo.2012.49. — View Citation
Pedersen BK, Fischer CP. Beneficial health effects of exercise--the role of IL-6 as a myokine. Trends Pharmacol Sci. 2007 Apr;28(4):152-6. doi: 10.1016/j.tips.2007.02.002. Epub 2007 Feb 28. — View Citation
Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24(2-3):113-9. doi: 10.1023/a:1026070911202. — View Citation
Phielix E, Meex R, Moonen-Kornips E, Hesselink MK, Schrauwen P. Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia. 2010 Aug;53(8):1714-21. doi: 10.1007/s00125-010-1764-2. Epub 2010 Apr 27. — View Citation
Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PW. Oxidative capacity of human muscle fiber types: effects of age and training status. J Appl Physiol (1985). 1995 Jun;78(6):2033-8. doi: 10.1152/jappl.1995.78.6.2033. — View Citation
Radom-Aizik S, Zaldivar F Jr, Oliver S, Galassetti P, Cooper DM. Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes. J Appl Physiol (1985). 2010 Jul;109(1):252-61. doi: 10.1152/japplphysiol.01291.2009. Epub 2010 Jan 28. — View Citation
Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One. 2009;4(5):e5610. doi: 10.1371/journal.pone.0005610. Epub 2009 May 19. — View Citation
Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res. 2007 Feb 16;100(3):416-24. doi: 10.1161/01.RES.0000257913.42552.23. Epub 2007 Jan 18. — View Citation
Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab. 2012 Sep;23(9):459-66. doi: 10.1016/j.tem.2012.06.006. Epub 2012 Jul 18. — View Citation
Sparks LM, Moro C, Ukropcova B, Bajpeyi S, Civitarese AE, Hulver MW, Thoresen GH, Rustan AC, Smith SR. Remodeling lipid metabolism and improving insulin responsiveness in human primary myotubes. PLoS One. 2011;6(7):e21068. doi: 10.1371/journal.pone.0021068. Epub 2011 Jul 8. — View Citation
Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, Smith SR. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes. 2005 Jul;54(7):1926-33. doi: 10.2337/diabetes.54.7.1926. — View Citation
Spina RJ, Chi MM, Hopkins MG, Nemeth PM, Lowry OH, Holloszy JO. Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. J Appl Physiol (1985). 1996 Jun;80(6):2250-4. doi: 10.1152/jappl.1996.80.6.2250. — View Citation
Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol. 2007 Mar;292(3):R1271-8. doi: 10.1152/ajpregu.00472.2006. Epub 2006 Nov 9. — View Citation
Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem. 2000 Dec 22;275(51):40235-43. doi: 10.1074/jbc.M004356200. — View Citation
Tu P, Bhasin S, Hruz PW, Herbst KL, Castellani LW, Hua N, Hamilton JA, Guo W. Genetic disruption of myostatin reduces the development of proatherogenic dyslipidemia and atherogenic lesions in Ldlr null mice. Diabetes. 2009 Aug;58(8):1739-48. doi: 10.2337/db09-0349. Epub 2009 Jun 9. — View Citation
Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M; Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001 May 3;344(18):1343-50. doi: 10.1056/NEJM200105033441801. — View Citation
van Raalte DH, Li M, Pritchard PH, Wasan KM. Peroxisome proliferator-activated receptor (PPAR)-alpha: a pharmacological target with a promising future. Pharm Res. 2004 Sep;21(9):1531-8. doi: 10.1023/b:pham.0000041444.06122.8d. — View Citation
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007 Apr 27;316(5824):575-9. doi: 10.1126/science.1139089. Epub 2007 Mar 22. — View Citation
Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA. Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta. 1987 Jun 29;892(2):191-6. doi: 10.1016/0005-2728(87)90174-5. — View Citation
Wente W, Efanov AM, Brenner M, Kharitonenkov A, Koster A, Sandusky GE, Sewing S, Treinies I, Zitzer H, Gromada J. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006 Sep;55(9):2470-8. doi: 10.2337/db05-1435. — View Citation
Wessner B, Gryadunov-Masutti L, Tschan H, Bachl N, Roth E. Is there a role for microRNAs in exercise immunology? A synopsis of current literature and future developments. Exerc Immunol Rev. 2010;16:22-39. — View Citation
Williams AH, Liu N, van Rooij E, Olson EN. MicroRNA control of muscle development and disease. Curr Opin Cell Biol. 2009 Jun;21(3):461-9. doi: 10.1016/j.ceb.2009.01.029. Epub 2009 Mar 9. — View Citation
Williamson DL, Kimball SR, Jefferson LS. Acute treatment with TNF-alpha attenuates insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism. Am J Physiol Endocrinol Metab. 2005 Jul;289(1):E95-104. doi: 10.1152/ajpendo.00397.2004. Epub 2005 Feb 8. — View Citation
Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010 Jul 9;39(1):133-44. doi: 10.1016/j.molcel.2010.06.010. — View Citation
Zoll J, Sanchez H, N'Guessan B, Ribera F, Lampert E, Bigard X, Serrurier B, Fortin D, Geny B, Veksler V, Ventura-Clapier R, Mettauer B. Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol. 2002 Aug 15;543(Pt 1):191-200. doi: 10.1113/jphysiol.2002.019661. — View Citation
* Note: There are 82 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Measure change in mitochondrial capacity | The difference will be measured in obese, lean and athletic participants.
The Phosphocreatine (PCr) recovery time constant and the PCr level in oxygenated muscle at rest will be used to calculate maximum mitochondrial capacity. |
Baseline (Day -6), Day 18 | |
Secondary | Measure change of expression of proteins | The difference will be measured in obese, lean and athletic participants.
This will be taken from muscle biopsy and/or blood plasma samples obtained at baseline, before and after exercise. |
Baseline (Day -6), Day 0, Day 5, Day 12, Day 18 | |
Secondary | Measure change in mRNA/miRNA levels | The difference will be measured in obese, lean and athletic participants.
This will be taken from muscle biopsy and/or blood plasma samples obtained at baseline, before and after exercise. |
Baseline (Day -6), Day 0, Day 5, Day 12, Day 18 |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04101669 -
EndoBarrier System Pivotal Trial(Rev E v2)
|
N/A | |
Recruiting |
NCT04243317 -
Feasibility of a Sleep Improvement Intervention for Weight Loss and Its Maintenance in Sleep Impaired Obese Adults
|
N/A | |
Terminated |
NCT03772886 -
Reducing Cesarean Delivery Rate in Obese Patients Using the Peanut Ball
|
N/A | |
Completed |
NCT03640442 -
Modified Ramped Position for Intubation of Obese Females.
|
N/A | |
Completed |
NCT04506996 -
Monday-Focused Tailored Rapid Interactive Mobile Messaging for Weight Management 2
|
N/A | |
Recruiting |
NCT06019832 -
Analysis of Stem and Non-Stem Tibial Component
|
N/A | |
Active, not recruiting |
NCT05891834 -
Study of INV-202 in Patients With Obesity and Metabolic Syndrome
|
Phase 2 | |
Active, not recruiting |
NCT05275959 -
Beijing (Peking)---Myopia and Obesity Comorbidity Intervention (BMOCI)
|
N/A | |
Recruiting |
NCT04575194 -
Study of the Cardiometabolic Effects of Obesity Pharmacotherapy
|
Phase 4 | |
Completed |
NCT04513769 -
Nutritious Eating With Soul at Rare Variety Cafe
|
N/A | |
Withdrawn |
NCT03042897 -
Exercise and Diet Intervention in Promoting Weight Loss in Obese Patients With Stage I Endometrial Cancer
|
N/A | |
Completed |
NCT03644524 -
Heat Therapy and Cardiometabolic Health in Obese Women
|
N/A | |
Recruiting |
NCT05917873 -
Metabolic Effects of Four-week Lactate-ketone Ester Supplementation
|
N/A | |
Active, not recruiting |
NCT04353258 -
Research Intervention to Support Healthy Eating and Exercise
|
N/A | |
Completed |
NCT04507867 -
Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III
|
N/A | |
Recruiting |
NCT03227575 -
Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control
|
N/A | |
Completed |
NCT01870947 -
Assisted Exercise in Obese Endometrial Cancer Patients
|
N/A | |
Recruiting |
NCT05972564 -
The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function
|
Phase 1/Phase 2 | |
Recruiting |
NCT06007404 -
Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
|
||
Recruiting |
NCT05371496 -
Cardiac and Metabolic Effects of Semaglutide in Heart Failure With Preserved Ejection Fraction
|
Phase 2 |