Clinical Trials Logo

Clinical Trial Details — Status: Terminated

Administrative data

NCT number NCT00265980
Other study ID # AAAA5988
Secondary ID R01DK064773
Status Terminated
Phase N/A
First received
Last updated
Start date July 2002
Est. completion date July 2013

Study information

Verified date August 2019
Source Columbia University
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Previous work in our laboratory, and many others, has shown that body weight is regulated. When anyone, fat or thin, tries to maintain a reduced body weight, many systems affecting energy balance (skeletal muscle, neuroendocrine, and autonomic systems) conspire to slow metabolic rate thus favoring the regain of lost weight. Individuals with leptin deficiency are remarkably similar to weight-reduced individuals. Their metabolism, thyroid hormones, and sympathetic nervous system activity are all low despite their obesity. While administration of leptin to leptin-deficient humans results in substantial weight loss and increases in energy expenditure. However, leptin administration to leptin-sufficient humans at usual body weight has little or no effect on weight unless given in doses 10-20 times what would be considered to be in the normal physiological range. This study examines the hypothesis that leptin is "read" by various systems regulating energy balance as an indicator of how much energy we have stored and that the body perceives the weight-reduced state as a condition of relative leptin insufficiency. Within this model, restoration of leptin to levels present prior to weight loss should relieve much of the metabolic opposition to keeping weight off. Preliminary studies support this hypothesis.


Description:

The failure of obesity treatments to sustain weight reduction is widely recognized. The central hypotheses of these studies are that: 1) Energy and neuroendocrine homeostatic systems are altered during the maintenance of a reduced body weight in a manner that favors weight regain; 2) These changes occur because weight-reduced individuals are in a state of relative leptin deficiency due to loss of body fat; and 3) Therefore these changes accompanying the maintenance of a reduced body weight will be reversed if circulating leptin concentrations are restored to those that were present prior to weight reduction. Maintenance of a reduced body weight is associated with integrated autonomic and neuroendocrine changes that reduce energy expenditure and increase food intake in a manner that is similar to that seen in rodents and humans who are deficient in, or resistant to, the adipocyte-derived hormone leptin.

Systemic leptin administration to leptin-deficient rodents and humans reverses the metabolic (hypometabolism, hyperphagia), autonomic (increased parasympathetic and decreased sympathetic nervous system tone), and neuroendocrine changes that characterize the leptin-deficient state. The proposed studies focus on the neuroendocrine, autonomic, and metabolic changes that characterize the reduced-obese individual, and the effects on these phenotypes of restoration of circulating concentrations of leptin to levels present prior to weight loss.

Healthy lean and overweight subjects are admitted to the General Clinical Research Center at Columbia University Medical College and placed on a liquid formula diet. Calories are adjusted until weight is stable and then subjects undergo testing of neuroendocrine, autonomic, and metabolic function. All subjects undergo an in-patient 10% weight reduction. Subjects are studied in a single blind placebo control design in which they are studied at usual weight and while maintaining a 10% reduced weight. At either usual weight or reduced state subjects undergo a single blind crossover placebo/control study in which they receive placebo, leptin injections while on an isocaloric diet either at usual weight or following a 10% weight loss.

During each of these study periods, subjects will undergo detailed evaluation of 1) energy expenditure; 2) autonomic nervous system tone (serial blockade of sympathetic and parasympathetic inputs, heart rate variability analyses, and urinary catecholamine excretion); 3) hypothalamic-pituitary-thyroid, -adrenal and -gonadal, axis function; 4) adipose tissue gene expression; 5) other molecules (e.g., adiponectin, ghrelin, PYY) that may influence neuroendocrine and metabolic function. The results of these studies will further delineate the physiology of body weight regulation and of leptin.


Recruitment information / eligibility

Status Terminated
Enrollment 22
Est. completion date July 2013
Est. primary completion date July 2013
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 19 Years to 45 Years
Eligibility Inclusion Criteria:

- Healthy lean or overweight males and females who have sustained their current weight for at least 6 months.

Exclusion Criteria:

- Pregnancy

- Any illness or chronic medication that affect energy expenditure, neuroendocrine function, autonomic function or that would impair ability to tolerate a prolonged hospital stay including rapid weight reduction and vigorous exercise.

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Subcutaneous Placebo
Twice daily injections of saline in the same volume as will be used for leptin injections.
Leptin
Leptin will be given as twice daily subcutaneous injections in doses titrated to replicate 8 a.m. circulating leptin concentrations measured in the same subjects prior to weight loss.

Locations

Country Name City State
United States Columbia University New York New York

Sponsors (2)

Lead Sponsor Collaborator
Columbia University National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

Country where clinical trial is conducted

United States, 

References & Publications (8)

Baldwin KM, Joanisse DR, Haddad F, Goldsmith RL, Gallagher D, Pavlovich KH, Shamoon EL, Leibel RL, Rosenbaum M. Effects of weight loss and leptin on skeletal muscle in human subjects. Am J Physiol Regul Integr Comp Physiol. 2011 Nov;301(5):R1259-66. doi: 10.1152/ajpregu.00397.2011. Epub 2011 Sep 14. — View Citation

Hinkle W, Cordell M, Leibel R, Rosenbaum M, Hirsch J. Effects of reduced weight maintenance and leptin repletion on functional connectivity of the hypothalamus in obese humans. PLoS One. 2013;8(3):e59114. doi: 10.1371/journal.pone.0059114. Epub 2013 Mar 21. — View Citation

Kissileff HR, Thornton JC, Torres MI, Pavlovich K, Mayer LS, Kalari V, Leibel RL, Rosenbaum M. Leptin reverses declines in satiation in weight-reduced obese humans. Am J Clin Nutr. 2012 Feb;95(2):309-17. doi: 10.3945/ajcn.111.012385. Epub 2012 Jan 11. — View Citation

Page-Wilson G, Reitman-Ivashkov E, Meece K, White A, Rosenbaum M, Smiley RM, Wardlaw SL. Cerebrospinal fluid levels of leptin, proopiomelanocortin, and agouti-related protein in human pregnancy: evidence for leptin resistance. J Clin Endocrinol Metab. 2013 Jan;98(1):264-71. doi: 10.1210/jc.2012-2309. Epub 2012 Nov 1. — View Citation

Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S, Gallagher D, Mayer L, Murphy E, Leibel RL. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest. 2005 Dec;115(12):3579-86. — View Citation

Rosenbaum M, Goldsmith RL, Haddad F, Baldwin KM, Smiley R, Gallagher D, Leibel RL. Triiodothyronine and leptin repletion in humans similarly reverse weight-loss-induced changes in skeletal muscle. Am J Physiol Endocrinol Metab. 2018 Nov 1;315(5):E771-E779 — View Citation

Rosenbaum M, Leibel RL. 20 years of leptin: role of leptin in energy homeostasis in humans. J Endocrinol. 2014 Oct;223(1):T83-96. doi: 10.1530/JOE-14-0358. Epub 2014 Jul 25. Review. — View Citation

Rosenbaum M, Murphy EM, Heymsfield SB, Matthews DE, Leibel RL. Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab. 2002 May;87(5):2391-4. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Total Energy Expenditure (TEE) To measure the metabolic changes associated with maintenance of a reduced body weight (in kcal/day) Baseline, 11 weeks, 18 weeks
Secondary TEE/FFM To measure the total energy expenditure/fat-free mass (FFM) (in kcal/kg). Baseline, 11 weeks, 18 weeks
See also
  Status Clinical Trial Phase
Recruiting NCT04243317 - Feasibility of a Sleep Improvement Intervention for Weight Loss and Its Maintenance in Sleep Impaired Obese Adults N/A
Recruiting NCT04101669 - EndoBarrier System Pivotal Trial(Rev E v2) N/A
Terminated NCT03772886 - Reducing Cesarean Delivery Rate in Obese Patients Using the Peanut Ball N/A
Completed NCT03640442 - Modified Ramped Position for Intubation of Obese Females. N/A
Completed NCT04506996 - Monday-Focused Tailored Rapid Interactive Mobile Messaging for Weight Management 2 N/A
Recruiting NCT06019832 - Analysis of Stem and Non-Stem Tibial Component N/A
Active, not recruiting NCT05891834 - Study of INV-202 in Patients With Obesity and Metabolic Syndrome Phase 2
Active, not recruiting NCT05275959 - Beijing (Peking)---Myopia and Obesity Comorbidity Intervention (BMOCI) N/A
Recruiting NCT04575194 - Study of the Cardiometabolic Effects of Obesity Pharmacotherapy Phase 4
Completed NCT04513769 - Nutritious Eating With Soul at Rare Variety Cafe N/A
Withdrawn NCT03042897 - Exercise and Diet Intervention in Promoting Weight Loss in Obese Patients With Stage I Endometrial Cancer N/A
Completed NCT03644524 - Heat Therapy and Cardiometabolic Health in Obese Women N/A
Recruiting NCT05917873 - Metabolic Effects of Four-week Lactate-ketone Ester Supplementation N/A
Active, not recruiting NCT04353258 - Research Intervention to Support Healthy Eating and Exercise N/A
Completed NCT04507867 - Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III N/A
Recruiting NCT03227575 - Effects of Brisk Walking and Regular Intensity Exercise Interventions on Glycemic Control N/A
Completed NCT01870947 - Assisted Exercise in Obese Endometrial Cancer Patients N/A
Recruiting NCT05972564 - The Effect of SGLT2 Inhibition on Adipose Inflammation and Endothelial Function Phase 1/Phase 2
Recruiting NCT06007404 - Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
Recruiting NCT05371496 - Cardiac and Metabolic Effects of Semaglutide in Heart Failure With Preserved Ejection Fraction Phase 2