Clinical Trials Logo

Clinical Trial Summary

Chronic ocular neuropathic pain may be misdiagnosed as dry eye disease. Our study aims to identify a population with previous monocular trauma and dry eye symptoms and differentiate neuropathic from dry eye pain using topical corneal naloxone hydrochloride.


Clinical Trial Description

Dry eye is a ubiquitous and debilitating ocular condition that affects tens of millions in the United States (DEWS, 2007). However, there is increasing evidence that the symptoms of dry eye overlap with the distinct condition of ocular neuropathic pain, and that many patients given a dry eye diagnosis are mislabeled (Galor, 2017). These shared symptoms include but are not limited to: hypoesthesia, hyperalgesia, and allodynia. According to the 2017 DEWS II (Dry Eye Workshop) pain and sensation report by the Tear Film and Ocular Surface Society, neuropathic pain can manifest itself in the eye and may present similarly to dry eye, but should not be classified as such (Belmonte, 2017). Our study aims to further characterize this distinction by translating the rodent model of latent sensitization to the human eye. Latent sensitization is a model of chronic pain that reproduces both its episodic nature and its sensitivity to stress. It can be induced by an array of insults and follows a characteristic time course in which a hyperalgesic pain phase is followed by pain remission phase. Of clinical relevance, administration of mu-opioid antagonists (i.e. naloxone) during the remission phase reinstates animal pain behavior and physiologic reflexes to peak levels seen in the hyperalgesia phase (Marvizon, 2015). This phenomenon suggests that the animals are in a state of latent sensitization that can be unmasked by blocking the activity of the opioid signaling pathway through compounds like naloxone hydrochloride. Furthermore, the undulating course of chronic pain syndromes can be mimicked by introducing environmental and physical stressors that trigger and exacerbate pain states (Marvizon, 2015). Neuropathic pain is a common cause of chronic pain. It is defined by the International Association for the Study of Pain as pain that arises as a direct consequence of a lesion or disease affecting the somatosensory system. In contrast, nociceptive pain is produced by the normal function of nociceptors. Hence, neuropathic lesions do not necessarily involve the nociceptive pathway; instead, they can involve other somatosensory pathways including tactile, mechanical, and thermal pathways. These lesions manifest allodynia-a central pain sensation following a normally non-painful stimuli and a clinical hallmark of neuropathic pain. In the eye, allodynia may manifest as non-specific dry-eye-like-symptoms to stimuli including wind, temperature change, and humidity (Galor, 2017). Hyperalgesia is a heightened pain sensation to a normally painful stimulus and is another hallmark of neuropathic pain. Importantly, hyperalgesia is a symptom of both neuropathic and nociceptive pain, however the pathophysiologies are distinct. Neuropathic hyperalgesia is a sustained phenomenon that arises from neuronal remodeling and sensitization of nociceptive peripheral and/or central nerves. In distinction, nociceptive hyperalgesia arises from inflammatory cytokine mediators that sensitize nociceptors and resolves after the conclusion of inflammation. Given all of this, it can be difficult to clinically differentiate the two forms of hyperalgesia; similarly, it can be difficult to differentiate between neuropathic and nociceptive pain. In our murine model (Cho, 2019), we study latent sensitization of the eye after injuring the cornea with an alkali solution. We find that pain behavior (quantified by the number of eye wipes in thirty seconds after the topical administration of 2M NaCl to the corneal surface) peaks at day 10 post injury and returns to baseline by day 14 post injury (figure 3.1; next page). Topical administration of naloxone (100uM, one drop), reinstated peak pain behavior 16 weeks after initial corneal surface injury (figure 3.2; next page). We hypothesize that our patient population with monocular trauma and dry eye symptoms mirrors our murine model. The monocular trauma represents the initial corneal surface injury, and the dry eye symptoms represent the breakthrough pain. It is important to note that in other models of latent sensitization, peak pain responses can be reinstated by stressors other than opioid antagonism. Specifically, novel environment stressors and forced swims reproduce peak pain behavior experienced in the hyperalgesic phase. In a similar way, our patient population endorses exacerbation of dry eye symptoms in the setting of stress, sleep, and environmental changes. Our study aims to differentiate dry eye disease from ocular neuropathic pain by testing the latent sensitization model in the human eye. Given that there is good data to suggest chronic pain states, including our ocular model, can be masked by upregulation of the mu-opioid receptor signaling pathway, we hypothesize that our naloxone hydrochloride drop will induce a hyperalgesic response to hypertonic saline in a population with dry eye diagnosis and monocular trauma. We believe a topical naloxone ophthalmic drop is a potentially easy, cheap, and safe diagnostic tool for ocular neuropathic pain. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04454281
Study type Interventional
Source University of Kentucky
Contact
Status Completed
Phase Phase 1
Start date October 1, 2020
Completion date December 3, 2020

See also
  Status Clinical Trial Phase
Recruiting NCT04699734 - Peripheral Nerve Block in Patients With Painful Diabetic Polyneuropathy N/A
Recruiting NCT06019325 - Rhomboid Intercostal Plane Block on Chronic Pain Incidence and Acute Pain Scores After Mastectomy N/A
Completed NCT05235191 - Effectiveness and Safety of Methadone Versus Placebo for the Control of Neuropathic Pain in Different Etiologies Phase 3
Completed NCT05845177 - Persistent Pain After Hip Replacement
Completed NCT05496205 - A SAD Study to Evaluate the Safety, Tolerability and PK/PD of iN1011-N17 in Healthy Volunteers Phase 1
Not yet recruiting NCT05949554 - Electroencephalographic (EEG) Profils for Patients on Intravenous Ketamine.
Withdrawn NCT05052645 - Ear Acupuncture for Neuropathic Pain N/A
Completed NCT02866396 - Impact of Pregabalin in Chronic Users vs. a Perioperative Limited Prescription on Oxycodone Requirement
Completed NCT02930551 - Neuromas as the Cause of Pain N/A
Completed NCT02824588 - Working Memory Training for Chronic Neuropathic and Fibromyalgia Pain N/A
Active, not recruiting NCT02560545 - Cannabinoids Effects on the Pain Modulation System N/A
Enrolling by invitation NCT02485795 - Observational Study of the Impact of Genetic Testing on Healthcare Decisions and Care in Interventional Pain Management N/A
Completed NCT02099890 - The Effect of Diet on Chronic Inflammation and Related Disorders Following Spinal Cord Injury Phase 3
Not yet recruiting NCT02246517 - The Effect of N2O on Chronic Neuropathic Pain Patients Phase 0
Completed NCT01946555 - Prospective Longitudinal Observational Study to Evaluate the Clinical Characteristics and Opioids Treatments in Patients With Breakthrough Cancer Pain N/A
Completed NCT01884662 - Virtual Walking for Neuropathic Pain in Spinal Cord Injury N/A
Completed NCT01718821 - Assessments on Current Pain Managements in Upper Gastrointestinal Cancer Patients N/A
Completed NCT01669967 - The Role of Intravenous (IV) Lidocaine in the Management of Chronic Neuropathic Pain of Peripheral Nerve Origin N/A
Completed NCT01201317 - A Study to Investigate the Analgesic Efficacy of AZD2423 Compared With Placebo After 28 Days Treatment in Patients With Painful Diabetic Polyneuropathy Phase 2
Completed NCT01207596 - Evaluating the Efficacy and Safety of Extended Release Hydromorphone (Exalgo) in Patients With Neuropathic Pain Phase 4