View clinical trials related to Nervous System Diseases.
Filter by:This project will consist of 1 large clinical trial with 2 core concepts: (1) Clinical benefits of an intensive rehabilitation programme using advanced technology, compared to the control group; (2) A full health economic evaluation combined with model-based estimation of costs and benefits.
Neurological immune-related adverse events (n-irAEs) are an emerging group of disorders of patients with cancer treated with immune checkpoint inhibitors, presenting with heterogeneous clinical manifestations and of uncertain outcome. Novel genetic, inflammatory, and neurogenerative biomarkers could be associated with distinct phenotypes and different outcomes. To test this hypothesis, the study will provide: a phenotypic characterization and outcome assessment of patients with n-irAEs; the analysis of biomarkers of genetic predisposition (HLA and other immunity-related genes), inflammation (serum and cerebrospinal fluid [CSF] cytokines and autoantibodies, peripheral blood and CSF lymphocytes and other immune cells, neuroimaging), neurodegeneration (serum and CSF neurofilaments, neuroimaging) and their correlation with clinical features and outcome.
Rationale: Deep brain stimulation (DBS) of the thalamus is an effective surgical treatment for patients with disabling essential tremor, despite optimal pharmacological treatment. To date, the standard DBS procedure is performed under local anesthesia which is very burdensome for patients. It is now possible to directly visualize the target (motor) area in the thalamus due to advances in modern imaging techniques. DBS surgery could be performed under general anesthesia (asleep). Objective: The primary objective of the study is to determine whether asleep thalamic DBS surgery provides an equal tremor reduction compared to awake thalamic DBS surgery, measured by the clinically validated Essential Tremor Rating Assessment Scale after six months of DBS. Secondary outcomes are: disease related daily functioning, adverse effects, operation time, quality of life, patient satisfaction with treatment outcome and patient evaluation of treatment burden. Study design: The study will be a multicentre prospective randomized open label blinded (PROBE) endpoint trial comparing thalamic DBS under general versus local anesthesia. Study population: A total of 110 patients with disabling essential tremor despite optimal pharmacological treatment will be randomized. Intervention (if applicable): Patients will be randomized for asleep DBS or awake DBS. According to the standard DBS procedure, two brain-electrodes are connected to an implanted neurostimulator, which is placed subcutaneously in the subclavicular area Main study parameter/endpoints: The primary outcome measure is the change in tremor score on the Essential Tremor Rating Assessment Scale after 6 months of thalamic DBS. The secondary outcome measures are the Amsterdam Linear Disability Score for functional health status, Quality of Life in Essential Tremor Questionnaire, patient satisfaction with the treatment, patient evaluation of treatment burden, operating time, hospitalization time, change of tremor medication, side effects and complications. Nature and extent of the burden and risks associated with participation, benefit and group relatedness: Awake DBS at present is very burdensome and by many patients and health care providers considered to be an overly invasive treatment for essential tremor. Through this trial, we aim to investigate whether asleep DBS in essential tremor can become the new treatment standard. This is expected to increase the accessibility for DBS and subsequently would allow more people with essential tremor to be helped, as well as in an earlier stage of their disease than currently; more patients will benefit for a longer time period from DBS. Asleep DBS will have a shorter procedure length. The proposed research project involves treatment options that are standard care in daily practice. The therapies will not be combined with other research products. Both treatments have a low risk of serious complications and a higher risk of minor side effects. Regular follow up will be used. Participation in this study constitutes moderate risk according to NFU criteria for human research.
Video game-based training programs, in the following referred to as "exergames" are an innovative digital training approach to simultaneously train physical and cognitive functions and increase training motivation for various populations. Patients who are differently limited in their physical and cognitive performance due to a decline in functioning can profit from a motivating and combined physical-cognitive training approach. An interdisciplinary team of movement scientists, sports and training experts, as well as game and industrial designers developed an innovative and immersive video game-based training product for patients - the ExerCube training software licence. The exergame development focused on a user-centred process together with the target population. The ExerCube training software licence is an exergame training product that includes immersive mixed-reality training programs (or video games) for patients. Depending on the patient's training requirements, the therapists can choose from the training program repertoire. The patients control the training program (or video game) by specific (whole) body movements. To present the virtual training programs from the ExerCube training software licence in the physical environment, the ExerCube hardware and harness system is used to serve as a physical training room. It allows the virtual video game environment to be presented in the physical world. This summative usability study aims to assess the training system's safety, usability and validate the user experience. Primary end-users (defined as patients aged 18 and above) and secondary end-users (defined as sports scientists, training therapists or physiotherapists/occupational therapists with a focus on sports/training therapy) will test and review the system in different testing scenarios.
The purpose of this study is to evaluate the effectiveness of social network in improving drug compliance and risk factors control rate of stroke high-risk population after discharge.
Individuals with and without neurologic diagnoses greatly benefit from participation in regular exercise but the majority are physically inactive. This is an issue for both them and their care partners as their health is often linked. This study aims to examine the long-term physical and psychosocial effects of structured, group-based, high intensity functional training (HIFT) exercise for people with neurologic diagnoses and their care partners.
ICS (International Continence Society) recommendations published in 2017 recommend performing urodynamic examinations in the sitting or standing position. These recommendations are based on a review of the literature published in 2008, which has several limitations: heterogeneous populations, old and non-harmonized techniques, and very few neurological patients. It seems appropriate to focus on neurological patients and to examine the influence of position on the detection of detrusor overactivity in these patients. The point here is to reexamine the ICS recommendations, which are not designed for neurological patients. Indeed, many patients suffering from Multiple Sclerosis (MS) or Parkinson's disease are unable to sit or stand for the duration of the urodynamic examination. The investigators would like to assess whether exploring sphincter disorders in the supine position is still interpretable. This would enable us to define ICS good practice recommendations for a neurological population.
The goal of this three-armed, observer-blinded, randomised controlled trial is to (i) to implement a telerehabilitation intervention in routine care after an inpatient rehabilitation stay for people insured with the Social Insurance Institution for the Self-Employed (SVS), (ii) to evaluate the impact of telerehabilitation on the consolidation of goals achieved during the inpatient stay in everyday life, and (iii) to evaluate whether independence in everyday life can be increased by implementing telerehabilitation at home compared to standard care. Our hypothesis is that the tele-reha intervention, including ongoing therapist support, will improve independence in daily living (defined as the primary outcome of this study), as measured by the Functional Assessment Measure (FAM), compared to a control group receiving a standard paper-based program.
Gait changes appear and become the main cause of disability, loss of independence, falls, fractures and reduced quality of life for patients with Parkinson Disease. Optimal gait management is complex and challenging. Some characteristics, such as gait variability, postural instability, and postural changes, continue to worsen over time despite optimal dopaminergic treatment, suggesting that additional interventions are needed. Given the physiology of gait and postural control in humans, spinal cord stimulation is a potential target for neuromodulatory approaches to gait and postural disorders. Repetitive transspinal magnetic stimulation ( rTSMS) has attracted a lot of attention, due to the possibility of modulating motor and sensory networks in a non-invasive way, activating directly the dorsal ascending pathways and projecting to the thalamic nuclei, cerebral cortex, and brainstem nuclei, thus stimulating descending motor tracts and interrupting aberrant oscillatory activity in corticobasal nuclei circuits. The combination of non-invasive neuromodulation with other therapies can enhance the effectiveness of rehabilitation, increasing plasticity and clinical efficacy, offering a greater and more sustained effect than either therapy alone.It's recommended that patients with PD perform a specific exercise for walking, such as treadmill training (tt), that imposes an external rhythm and concentration of attention on gait, acting as an external cue or marker, promoting a more stable gait, reducing gait variability and decreasing risk of falls. It is proposed, in this study, to develop a new treatment model through the integration of two promising and complementary approaches to improve gait disorders in PD: rTSMS and tt. Thus, the investigators idealized the realization of the first randomized, double-blind, placebo-controlled, parallel, phase III clinical trial that will evaluate the efficacy of tt associated with rTSMS in patients with PD.
The aim of this study is to assess the safety and the feasibility of two versions of TWIICE Rise for exoskeleton-assisted ambulation in patients with a spinal cord injury. This study is done in two phases: The first phase evaluates the safety and feasibility of TWIICE Rise 0.0 with 5 patients over 6 sessions in clinic. The second phase is being conducted with TWIICE Rise 1.0. This version has potentially improved functionalities based on feedback from Phase 1. Safety and feasibility will be assessed with 10 patients over 24 sessions in different settings (clinic, home, and community environment).