View clinical trials related to Nervous System Diseases.
Filter by:Overview of study. This is an observational study that is intended to provide the first in-human data using EIT as a biomarker of muscle health in neuromuscular conditions. We will seek patients with neurological disorders (both neuromuscular and other neurological conditions) as well as healthy subjects for study. EIT measurements will be performed on appendicular muscles (in the upper and lower extremities) depending on the condition, both at rest and with contraction. EIT measurements will be repeated on an intermittent basis to assess repeatability as well disease progression or improvement over time.
The aim of the study is to assess the efficacy of dry needling in stroke patients in combination with intensive neurological physiotherapy. together with intensive neurological physiotherapy treatment. Randomised and blinded experimental study control group where the sample recruited was 20 patients, who were randomly assigned to a control group. randomly assigned to a control group, where they received intensive treatment, or to an intervention group, where they received intervention group, where they received ultrasound-guided dry needling of the tibialis anterior and posterior muscles followed by an intensive followed by intensive neurological physiotherapy treatment.
Cerebral Palsy (CP) is a non-progressive neurodevelopmental disorder that causes activity limitation resulting from movement and posture deficiencies as a result of a lesion in the immature brain. Children with CP usually have difficulties in mobility, transfer and social participation due to many motor and sensory disorders such as muscle weakness, decreased postural control, balance, spasticity.Hypertonus and abnormal motor patterns, lack of trunk control and postural disorders adversely affect the physical development of these children. Children with CP show various posture disorders due to proximal muscle strength losses leading to limitations and deficiencies in postural reactions. This leads to losses in reactive and antisipatory postural adjustments, and limits upper extremity functions such as walking, reaching, and eating. For this reason, children with CP have difficulties in maintaining balance while standing or sitting independently, walking, maintaining postural control in various environments such as walking, hills/uneven floors, performing activities of daily living (ADL) and social participation.
This is a double-blind, placebo-controlled study during which patients will receive ricolinostat or placebo.
The aim of our study is to determine the effectiveness of US-guided hydrodissection of the median nerve in different contents and volumes in patients diagnosed with mild to moderate carpal tunnel syndrome.
Every-day life means being part of a complex environment and performing complex tasks that usually involve a combination of motor and cognitive skills. However, the process of aging or the sequelae of neurological diseases such as Parkinson's disease (PD) compromises motor-cognitive interaction necessary for an independent lifestyle. While motor-cognitive performance has been identified as an important goal for sustained health across different clinical populations, little is known about underlying brain function leading to these difficulties and how to best target these motor-cognitive difficulties in the context of rehabilitation and exercise interventions. The challenge of improving treatments of motor-cognitive difficulties (such as dual-tasking and navigation) is daunting, and an important step is arriving at a method that accurately portrays these impairments in an ecological valid state. The investigators aim therefore to explore brain function during complex walking in healthy and PD by investigating the effects of age and neurological disease on motor-cognitive performance and its neural correlates during three conditions of complex walking (dual-task walking, navigation and a combination of both) using non-invasive measures of brain activity (functional near infrared spectrometry, fNIRS) and advanced gait analysis in real time in young, older healthy adults and people with PD.
High risk infant is defined as infant with a negative history of environmental and biological factors, which can lead to neuromotor development problems. It is a heterogeneous group of premature infants born under thirty-seven weeks of age, with infants with low birth weight, term or developmental retardation for various reasons. Therefore, preterm infants with low birth weight can survive with a neurological sequelae such as cerebral palsy (CP), epilepsy, hearing and vision loss, mental retardation, speech and speech problems, and learning difficulties. The clinical diagnosis of CP, which can be observed in high-risk infants, is based on the combination of some neuroimaging and neurological examinations and assesments like neonatal imaging, general movements (GMs) and Hammersmith Infant Neurological Examination (HINE).
This study aims to characterize the clinical features, frequency of different subgroups of MG, and identify predictors of treatment responsiveness among different subgroups of MG. The predictors are including primary outcome (percentage of changes in MG scales at baseline at time of enrollment and after 3 months) and secondary outcome (treatment-related adverse events). Also it aims to determine the frequency of patients with refractory MG. This information will be used to understand the trends and mechanisms of disease relapse, and optimal management strategies.
This study aims to develop and validate a sensitive and non-invasive eye-tracking software application. This study will obtain participant responses to brief cognitive tests designed to evaluate several key functions known to be affected by neurological disorders and non-invasive eye movement measurements in response to visually presented stimuli during specifically designed eye-tracking tests. The study data will be used to develop machine learning algorithms and validate a software application intended to track the progressive component of neurological disorders and associated cognitive changes.
Hypermobile Ehlers-Danlos Syndrome (hEDS) is a connective tissue disorder characterized by hyperextensible skin, joint hypermobility and additional connective tissue manifestations. For unclear reasons, hEDS is associated with many gastrointestinal (GI) and autonomic nervous system (ANS) complaints such as postural orthostatic tachycardia syndrome (POTS). This study will address the clinical relationship between hEDS/Hypermobile Spectrum Disorders and autonomic regulation and see if there is a benefit of two forms of non-invasive vagal nerve stimulation therapies to reduce GI symptoms in hEDS and POTS. The study will also investigate plausible effects of these nerve stimulation therapies on gastric function and autonomic signaling.