Clinical Trials Logo

Clinical Trial Summary

The heart beat is controlled by electrical signals. Following a heart attack, part of the heart muscle dies and is later replaced by scar tissue. Within this area of scar, there often remain "channels" of surviving tissue still able to transmit electrical signals. However, it is well established that these "conduction channels" (CC) can form a short circuit around the scar, leading to electrical disturbances (arrhythmias) that are potentially life threatening. The commonest of these is ventricular tachycardia (VT), and is estimated to cause 300,000 deaths per year.

One recognised treatment option of VT involves burning (ablation) these "conduction channels" (CC) within the scar. However, at present, the procedure is long and is far off 100% effective. Consequently, current best practice does not rely on treating the VT, but rather preventing it from causing sudden death - this is achieved with an Implantable Cardioverter Defibrillator (ICD), a device which can recognise when a patient is in VT and deliver an internal shock to restore the normal electrical conduction. Patients with defibrillators subsequently are subject to recurrent painful and debilitating shocks which, although lifesaving, significantly reduce their quality of life. The limitation with ablation at present is due to the difficulty in visualising these CC's.

Investigators at Imperial College have created a novel electrogram visualisation program, Ripple Mapping (RM), which they have already found to be superior to currently used programmes in cases of arrhythmias in the upper chambers of the heart (the atria). During a retrospective study in patients with scar related VT following a heart attack, when ablation was delivered in areas associated with identified Ripple Mapping Conduction Channels, these patients remained free of VT recurrence for >2 year follow up interval.

The study hypothesis is that Ripple Mapping can identify all conduction channels within scar tissue critical to the VT circuit, ablation of which will lead to long-term freedom from VT and ICD therapies. The investigators now aim to perform a prospective randomised study comparing Ripple Mapping guided VT ablation against conventional VT ablation.


Clinical Trial Description

In patients with a previous heart attack, the scar formed in the left ventricle (bottom chamber of the heart) consists of dead tissue mixed with strands of live tissue which form "conduction channels" (CC's). These Conduction channels can cause dangerous heart rhythms such as Ventricular Tachycardia (VT). This can lead to symptoms such as shortness of breath, dizziness, blackouts, and, in some, sudden death.

Patients at risk of sudden death receive special implanted devices called implantable cardioverter defibrillators (ICD) and can present with recurrent painful and debilitating ICD therapies consisting of internal shocks. Patients experiencing frequent ICD shocks due recurrent VT usually undergo a procedure to burn (ablate) the area of scar within the heart thought to be the source of the VT. This involves catheters (plastic tubes) inserted into the heart via the groin vessels allowing the cardiac electrophysiologists to obtain information about the scar. Scar tissue has low electrical voltage. By measuring the electrical voltage of the tissue in the heart, areas of scar as well as areas of live, healthy tissue can be identified and mapped. By burning (ablation) these abnormal channels of live tissue within scar (conduction channels), this can effectively reduce the episodes of VT a patient experiences, thereby reducing the frequency of shocks they experience and improve their quality of life.

In any one patient, more than 1 conduction channel and hence source of VT can be found. Current mapping technologies are incapable of providing electrophysiologists with the information that is required to locate all these conduction channels. Therefore ablation strategies have shifted from ablating in a single location in the scar, to extensive ablation within the scar in the hope that ALL conduction channels will be burnt. However, this extensive ablation strategy has no globally agreed consensus with several techniques used worldwide.

The disadvantage of this extensive ablation strategy is that the potential regions which can be responsible for VT can be large, requiring extensive ablation and therefore prolonged procedure times in sick patients who are unable to tolerate such lengthy procedures. In its current state, VT ablation by any strategy is technically challenging and time consuming with procedural times as long as 8 hours. In addition, although acute procedural success ranges from 77% to 95%, recurrence rates remain high - up to 50%.

Therefore, identification of ALL conduction channels within scar is a desirable goal for catheter ablation therapy in VT. Ripple Mapping (RM) is a novel mapping program which allows simultaneous display of "voltage" and "activation" data of the underlying ventricular tissue. RM therefore has the potential to display more detailed information of the functional properties of the underlying scar including any interspersed live tissue channels. Investigators at Imperial College have demonstrated the proof of concept of RM and validated the program in a series of abnormal heart rhythms that arise within the upper heart chambers (the atria) where RM was found to have a superior diagnostic yield as well as aiding the operator in reaching a diagnosis in shorter time when compared with conventional mapping systems. The Investigators subsequently performed a retrospective analysis of 21 patients undergoing post infarct VT ablation. All documented locations with concealed entrainment or perfect pace matches to the induced or clinical VT coincided with Ripple Mapping Conduction Channels (RMCC). In patients where ablation lesions overlapped all identified RMCCs, these patients remained free of VT recurrence for >2 year follow up interval.

The Investigators therefore propose to study the hypothesis that Ripple Mapping can identify all conduction channels within scar tissue critical to the VT circuit, ablation of which will lead to long-term freedom from VT and ICD therapies. This will be determined via a prospective randomised study comparing Ripple Mapping guided VT ablation against conventional VT ablation. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02216760
Study type Interventional
Source Imperial College London
Contact
Status Withdrawn
Phase N/A
Start date August 2014
Completion date August 2018

See also
  Status Clinical Trial Phase
Recruiting NCT06013813 - Conventional vs. Distal Radial Access Outcomes in STEMI Patients Treated by PCI N/A
Completed NCT04507529 - Peer-mentor Support for Older Vulnerable Myocardial Infarction Patients N/A
Recruiting NCT06066970 - Cardiac Biomarkers for the Quantification of Myocardial Damage After Cardiac Surgery
Recruiting NCT03620266 - Effects of Bilberry and Oat Intake After Type 2 Diabetes and/or MI N/A
Completed NCT04097912 - Study to Gather Information to What Extent Patients Follow the Treatment Regimen of Low-dose Aspirin for Primary and Secondary Prevention of Diseases of the Heart and Blood Vessels
Completed NCT04153006 - Comparison of Fingerstick Versus Venous Sample for Troponin I.
Completed NCT03668587 - Feasibility and Security of a Rapid Rule-out and rule-in Troponin Protocol in the Management of NSTEMI in an Emergency Departement
Recruiting NCT01218776 - International Survey of Acute Coronary Syndromes in Transitional Countries
Completed NCT03076801 - Does Choral Singing Help imprOve Stress in Patients With Ischemic HeaRt Disease? N/A
Recruiting NCT05371470 - Voice Analysis Technology to Detect and Manage Depression and Anxiety in Cardiac Rehabilitation N/A
Recruiting NCT04562272 - Attenuation of Post-infarct LV Remodeling by Mechanical Unloading Using Impella-CP N/A
Completed NCT04584645 - A Digital Flu Intervention for People With Cardiovascular Conditions N/A
Active, not recruiting NCT04475380 - Complex All-comers and Patients With Diabetes or Prediabetes, Treated With Xience Sierra Everolimus-eluting Stents
Not yet recruiting NCT06007950 - Time-restricted Eating Study (TRES): Impacts on Anthropometric, Cardiometabolic and Cardiovascular Health N/A
Withdrawn NCT05327855 - Efficacy and Safety of OPL-0301 Compared to Placebo in Adults With Post-Myocardial Infarction (MI) Phase 2
Recruiting NCT02876952 - High Intensity Aerobic Interval Training With Mediterranean Diet Recommendations in Post-Myocardial Infarct Patients N/A
Completed NCT02917213 - Imaging Silent Brain Infarct And Thrombosis in Acute Myocardial Infarction
Completed NCT02711631 - Feasibility and Effectiveness of Remote Virtual Reality-Based Cardiac Rehabilitation N/A
Completed NCT02382731 - Interventions to Support Long-Term Adherence aNd Decrease Cardiovascular Events Post-Myocardial Infarction N/A
Completed NCT02305602 - A Study of VentriGel in Post-MI Patients Phase 1