Heart Failure Clinical Trial
Official title:
Profiling Biomechanical Responses and Workload of the Human Myocardium to Explore the Concept of Myocardial Fatigue and Reversibility
To gain a comprehensive understanding of the biomechanical behaviour of human heart to explore the concept of myocardial fatigue in response to a temporal range of preload, afterload and drug-induced inotropy using in-vitro contractile assays.
A continuum of pathological states from fatigue, injury to damage of the myocardium has been proposed which complements the continuous spectrum of HF and reconciles the seemingly disparate plethora of mechanisms behind the pathophysiology of HF. Unlike skeletal muscle where mechanical stress can be readily removed upon fatigue, an impaired left ventricle continues to receive preload from the right ventricle and cannot rest, maintaining cardiac output only at the expense of increasing filling pressures (as in HF with preserved ejection fraction). If concurrently faced with high afterload from vascular stiffness, ventricular-arterial decoupling occurs, driving mechanical inefficiency and diminishing cardiac output (as in HF with reduced ejection fraction). Chances of recovery is linked to the degree of fatigue, cardiomyocyte loss and replacement with non-contractile fibrosis. Assuming that the myocardium is in a state of chronic fatigue before reaching advanced stages of fibrosis, cases such as aortic stenosis or hypertensive heart disease may potentially be reversible if the pathological load is promptly removed. This study will be re-synthesizing existing knowledge of the biomechanical behaviour of healthy and diseased cardiac myocytes and muscle in a new light of the theoretical constructs of myocardial fatigue, aligned with the existing energy-starvation theory. It will be a proof-of-concept study. Just as Frank-Starling's relationship between preload and cardiac output emerged from pre-clinical studies on muscle behaviour with subsequently major clinical implications, this study represents a necessary stepping stone to adding a new layer of insight into the pathophysiology of heart failure (HF). ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05654272 -
Development of CIRC Technologies
|
||
Recruiting |
NCT05650307 -
CV Imaging of Metabolic Interventions
|
||
Recruiting |
NCT05196659 -
Collaborative Quality Improvement (C-QIP) Study
|
N/A | |
Active, not recruiting |
NCT05896904 -
Clinical Comparison of Patients With Transthyretin Cardiac Amyloidosis and Patients With Heart Failure With Reduced Ejection Fraction
|
N/A | |
Completed |
NCT05077293 -
Building Electronic Tools To Enhance and Reinforce Cardiovascular Recommendations - Heart Failure
|
||
Recruiting |
NCT05631275 -
The Role of Bioimpedance Analysis in Patients With Chronic Heart Failure and Systolic Ventricular Dysfunction
|
||
Enrolling by invitation |
NCT05564572 -
Randomized Implementation of Routine Patient-Reported Health Status Assessment Among Heart Failure Patients in Stanford Cardiology
|
N/A | |
Enrolling by invitation |
NCT05009706 -
Self-care in Older Frail Persons With Heart Failure Intervention
|
N/A | |
Recruiting |
NCT04177199 -
What is the Workload Burden Associated With Using the Triage HF+ Care Pathway?
|
||
Terminated |
NCT03615469 -
Building Strength Through Rehabilitation for Heart Failure Patients (BISTRO-STUDY)
|
N/A | |
Recruiting |
NCT06340048 -
Epicardial Injection of hiPSC-CMs to Treat Severe Chronic Ischemic Heart Failure
|
Phase 1/Phase 2 | |
Recruiting |
NCT05679713 -
Next-generation, Integrative, and Personalized Risk Assessment to Prevent Recurrent Heart Failure Events: the ORACLE Study
|
||
Completed |
NCT04254328 -
The Effectiveness of Nintendo Wii Fit and Inspiratory Muscle Training in Older Patients With Heart Failure
|
N/A | |
Completed |
NCT03549169 -
Decision Making for the Management the Symptoms in Adults of Heart Failure
|
N/A | |
Recruiting |
NCT05572814 -
Transform: Teaching, Technology, and Teams
|
N/A | |
Enrolling by invitation |
NCT05538611 -
Effect Evaluation of Chain Quality Control Management on Patients With Heart Failure
|
||
Recruiting |
NCT04262830 -
Cancer Therapy Effects on the Heart
|
||
Completed |
NCT06026683 -
Conduction System Stimulation to Avoid Left Ventricle Dysfunction
|
N/A | |
Withdrawn |
NCT03091998 -
Subcu Administration of CD-NP in Heart Failure Patients With Left Ventricular Assist Device Support
|
Phase 1 | |
Recruiting |
NCT05564689 -
Absolute Coronary Flow in Patients With Heart Failure With Reduced Ejection Fraction and Left Bundle Branch Block With Cardiac Resynchronization Therapy
|