Multiple Sclerosis Clinical Trial
Official title:
A Novel Wearable Digital Biomarker for Detecting Changes in Multiple Sclerosis (MS) Disease Condition Through Home Monitoring of MS Patients
To measure the effectiveness of a Remote Patient Monitoring solution based on the use of a smart insole wearable device (and associated smart phone app), for monitoring MS patients' condition on a day-to-day basis. The main focus is the objective measurement of gait, given that 75% of people with MS display clinically significant gait impairments. Initial gait lab "gold standard" data indicate that the Artificial Intelligence (AI)-based digital biomarker will prove to be highly effective at detecting changes in the MS patient's condition.
Multiple sclerosis (MS) is lifelong autoimmune disease that is typically first diagnosed in young adults; MS affects the central nervous system and can result in various impairments, including walking, cognition, dexterity, sleep, vision and bladder control. Notably, impairments to gait are the most common and are identified as the most impactful to a person with MS's (PwMS's) quality of life. Furthermore, ambulation is a key metric used to assess the severity of MS and is the basis for the Expanded Disability Status Scale (EDSS) that represents the global standard for assessing a patient's MS condition. For these reasons, clinicians employ a variety of gait tests to assess the severity and progression of the disease, which require frequent clinical visits and lack objective measurements as compared to what can be measured in a laboratory setting. Current scales do not detect subtle progression that could be indicative of early transformation into Secondary Progressive MS (SPMS) from Relapsing Remitting MS (RRMS) or significant progression in progressive forms of MS. With advancements in wearable technologies and Artificial Intelligence (AI)-based algorithm development, clinicians can be provided with meaningful laboratory grade gait metrics collected in the patient's home environment to assist their practice. Objective walking information can be provided to clinicians to track the personalized progression of the disease to enable a more targeted treatment plan. A subset of this data is also shared with the patients via their smart phone app to keep them informed and motivated. Several times per week, smart insoles in the patient's shoes will collect data from the embedded sensors (pressure sensors, accelerometer, gyroscope). The wearable smart insoles are fitted into a pair of the patient's "everyday use" shoes, and are very similar to the type of "comfort" insoles available from a local pharmacy. The smart insole data will be used to create AI-based personalized models that compute each individual's walking signature; this includes tracking of subtle changes over time (improvement, deterioration) as well as identifying specific gait phenotypes. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05528666 -
Risk Perception in Multiple Sclerosis
|
||
Completed |
NCT03608527 -
Adaptive Plasticity Following Rehabilitation in Multiple Sclerosis
|
N/A | |
Recruiting |
NCT05532943 -
Evaluate the Safety and Efficacy of Allogeneic Umbilical Cord Mesenchymal Stem Cells in Patients With Multiple Sclerosis
|
Phase 1/Phase 2 | |
Completed |
NCT02486640 -
Evaluation of Potential Predictors of Adherence by Investigating a Representative Cohort of Multiple Sclerosis (MS) Patients in Germany Treated With Betaferon
|
||
Completed |
NCT01324232 -
Safety and Efficacy of AVP-923 in the Treatment of Central Neuropathic Pain in Multiple Sclerosis
|
Phase 2 | |
Completed |
NCT04546698 -
5-HT7 Receptor Implication in Inflammatory Mechanisms in Multiple Sclerosis
|
||
Active, not recruiting |
NCT04380220 -
Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-remitting Multiple Sclerosis
|
||
Completed |
NCT02835677 -
Integrating Caregiver Support Into MS Care
|
N/A | |
Completed |
NCT03686826 -
Feasibility and Reliability of Multimodal Evoked Potentials
|
||
Recruiting |
NCT05964829 -
Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis
|
N/A | |
Withdrawn |
NCT06021561 -
Orofacial Pain in Multiple Sclerosis
|
||
Completed |
NCT03653585 -
Cortical Lesions in Patients With Multiple Sclerosis
|
||
Recruiting |
NCT04798651 -
Pathogenicity of B and CD4 T Cell Subsets in Multiple Sclerosis
|
N/A | |
Active, not recruiting |
NCT05054140 -
Study to Evaluate Efficacy, Safety, and Tolerability of IMU-838 in Patients With Progressive Multiple Sclerosis
|
Phase 2 | |
Completed |
NCT05447143 -
Effect of Home Exercise Program on Various Parameters in Patients With Multiple Sclerosis
|
N/A | |
Recruiting |
NCT06195644 -
Effect of Galvanic Vestibular Stimulation on Cortical Excitability and Hand Dexterity in Multiple Sclerosis Patients
|
Phase 1 | |
Completed |
NCT04147052 -
iSLEEPms: An Internet-Delivered Intervention for Sleep Disturbance in Multiple Sclerosis
|
N/A | |
Completed |
NCT03591809 -
Combined Exercise Training in Patients With Multiple Sclerosis
|
N/A | |
Completed |
NCT03594357 -
Cognitive Functions in Patients With Multiple Sclerosis
|
||
Completed |
NCT02845635 -
MS Mosaic: A Longitudinal Research Study on Multiple Sclerosis
|