Multiple Sclerosis Clinical Trial
Official title:
COVID-19 Booster Vaccination in Persons With Multiple Sclerosis
Verified date | November 2022 |
Source | Griffin Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
The success of the U.S. vaccination program against SARS-Cov-2 is shown by a dramatic drop in infection rates, hospitalizations and deaths.However, it appears that many persons who take medications that chronically suppress the immune system do not produce neutralizing antibodies to COVID-19 proteins in response to vaccination. This group includes a significant number of persons with multiple sclerosis (PWMS), many of whom are on therapies that chronically suppress their immune function. It is unclear what advice clinicians should provide regarding COVID-19 precautions to patients who fail to develop detectable COVID-19 spike protein antibodies using standard commercially-available tests after a standard series of vaccination, or whether they should test for antibody responses to COVID-19 vaccines in the absence of guidelines. A key research question is whether, in the absence of stopping or reducing potentially immune-altering therapies, there is a way to increase the likelihood of a neutralizing antibody response to COVID-19 vaccination in PWMS who are taking immune suppressive medications.
Status | Terminated |
Enrollment | 10 |
Est. completion date | May 30, 2022 |
Est. primary completion date | May 30, 2022 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: 1. Diagnosis of clinically definite multiple sclerosis (CDMS) by the 2017 McDonald Criteria 38; 2. Age greater than or equal to 18 years; 3. Ability to travel to Griffin Hospital for phlebotomy and booster vaccination; 4. Completion of an initial COVID-19 vaccine series at least 4 weeks prior to booster randomization (i.e., two doses of either BNT162b2 or mRNA-1273, or one dose of Ad26.COV2.S); 5. Prior negative test for COVID-19 spike protein antibodies using a commercial assay; 6. Willing to undergo a booster vaccination with either BNT162b2, mRNA-1273 or Ad26.COV2.S. Exclusion Criteria: 1. Inability to give consent; 2. Non-fluency in English; 3. Inability to adhere to the protocol; 4. Anticipated life expectancy of less than six months; 5. Lack of a primary care physician or treating neurologist; 6. Taking an immunosuppressive medication or chemotherapy for any other conditions aside fromMS; 7. Presence of another autoimmune condition requiring treatment; 8. Active treatment for cancer; 9. History of heavy alcohol use within the past year, as defined by the following criteria: 1. Men: 5 or more alcoholic beverages per session or per day, or 15 or more per week; 2. Women: 4 or more alcoholic beverages per session or per day, or 8 or more per week; 10. History of illicit drug abuse, e.g., cocaine, heroin, PCP, and/or narcotics within the past year; 11. Any condition that would jeopardize the safety or rights of the subject, make it unlikely for the subject to complete the study, or confound the study results. 12. Anaphylactic or other severe reaction to a previously administered COVID-19 vaccine; 13. MS relapse or worsening symptoms after initial COVID-19 vaccination. 14. Positive urine pregnancy test at screening [women only]. Test is waived in women who are post-menopausal or incapable of conception. |
Country | Name | City | State |
---|---|---|---|
United States | Griffin Hospital | Derby | Connecticut |
Lead Sponsor | Collaborator |
---|---|
Griffin Hospital | Multiple Sclerosis Treatment Center, Yale-Griffin Prevention Research Center |
United States,
Achiron A, Mandel M, Dreyer-Alster S, Harari G, Magalashvili D, Sonis P, Dolev M, Menascu S, Flechter S, Falb R, Gurevich M. Author response to: Correspondence to humoral immune response to COVID-19 mRNA vaccine in patients with multiple sclerosis treated with high-efficacy disease-modifying therapies. Ther Adv Neurol Disord. 2021 May 29;14:17562864211020082. doi: 10.1177/17562864211020082. eCollection 2021. — View Citation
Altmann DM, Douek DC, Boyton RJ. What policy makers need to know about COVID-19 protective immunity. Lancet. 2020 May 16;395(10236):1527-1529. doi: 10.1016/S0140-6736(20)30985-5. Epub 2020 Apr 27. — View Citation
Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, McGettigan J, Khetan S, Segall N, Solis J, Brosz A, Fierro C, Schwartz H, Neuzil K, Corey L, Gilbert P, Janes H, Follmann D, Marovich M, Mascola J, Polakowski L, Ledgerwood J, Graham BS, Bennett H, Pajon R, Knightly C, Leav B, Deng W, Zhou H, Han S, Ivarsson M, Miller J, Zaks T; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021 Feb 4;384(5):403-416. doi: 10.1056/NEJMoa2035389. Epub 2020 Dec 30. — View Citation
Bar-Or A, Calkwood JC, Chognot C, Evershed J, Fox EJ, Herman A, Manfrini M, McNamara J, Robertson DS, Stokmaier D, Wendt JK, Winthrop KL, Traboulsee A. Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis: The VELOCE study. Neurology. 2020 Oct 6;95(14):e1999-e2008. doi: 10.1212/WNL.0000000000010380. Epub 2020 Jul 29. — View Citation
Boyarsky BJ, Werbel WA, Avery RK, Tobian AAR, Massie AB, Segev DL, Garonzik-Wang JM. Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients. JAMA. 2021 Jun 1;325(21):2204-2206. doi: 10.1001/jama.2021.7489. — View Citation
Brownlee WJ, Altmann DR, Prados F, Miszkiel KA, Eshaghi A, Gandini Wheeler-Kingshott CAM, Barkhof F, Ciccarelli O. Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis. Brain. 2019 Aug 1;142(8):2276-2287. doi: 10.1093/brain/awz156. — View Citation
Ciotti JR, Valtcheva MV, Cross AH. Effects of MS disease-modifying therapies on responses to vaccinations: A review. Mult Scler Relat Disord. 2020 Oct;45:102439. doi: 10.1016/j.msard.2020.102439. Epub 2020 Aug 1. Review. — View Citation
Doria-Rose N, Suthar MS, Makowski M, O'Connell S, McDermott AB, Flach B, Ledgerwood JE, Mascola JR, Graham BS, Lin BC, O'Dell S, Schmidt SD, Widge AT, Edara VV, Anderson EJ, Lai L, Floyd K, Rouphael NG, Zarnitsyna V, Roberts PC, Makhene M, Buchanan W, Luke CJ, Beigel JH, Jackson LA, Neuzil KM, Bennett H, Leav B, Albert J, Kunwar P; mRNA-1273 Study Group. Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19. N Engl J Med. 2021 Jun 10;384(23):2259-2261. doi: 10.1056/NEJMc2103916. Epub 2021 Apr 6. No abstract available. Erratum In: N Engl J Med. 2022 Feb 3;386(5):500. — View Citation
Doshi A, Chataway J. Multiple sclerosis, a treatable disease. Clin Med (Lond). 2016 Dec;16(Suppl 6):s53-s59. Review. — View Citation
Epstein DJ, Dunn J, Deresinski S. Infectious Complications of Multiple Sclerosis Therapies: Implications for Screening, Prophylaxis, and Management. Open Forum Infect Dis. 2018 Jul 16;5(8):ofy174. doi: 10.1093/ofid/ofy174. eCollection 2018 Aug. Review. — View Citation
Giovannoni G. Anti-CD20 immunosuppressive disease-modifying therapies and COVID-19. Mult Scler Relat Disord. 2020 Jun;41:102135. doi: 10.1016/j.msard.2020.102135. Epub 2020 Apr 18. — View Citation
Kandimalla R, John A, Abburi C, Vallamkondu J, Reddy PH. Current Status of Multiple Drug Molecules, and Vaccines: An Update in SARS-CoV-2 Therapeutics. Mol Neurobiol. 2020 Oct;57(10):4106-4116. doi: 10.1007/s12035-020-02022-0. Epub 2020 Jul 15. Review. — View Citation
Karpinski TM, Ozarowski M, Seremak-Mrozikiewicz A, Wolski H, Wlodkowic D. The 2020 race towards SARS-CoV-2 specific vaccines. Theranostics. 2021 Jan 1;11(4):1690-1702. doi: 10.7150/thno.53691. eCollection 2021. Review. — View Citation
Kennedy NA, Lin S, Goodhand JR, Chanchlani N, Hamilton B, Bewshea C, Nice R, Chee D, Cummings JF, Fraser A, Irving PM, Kamperidis N, Kok KB, Lamb CA, Macdonald J, Mehta S, Pollok RC, Raine T, Smith PJ, Verma AM, Jochum S, McDonald TJ, Sebastian S, Lees CW, Powell N, Ahmad T; Contributors to the CLARITY IBD study. Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in patients with IBD. Gut. 2021 Oct;70(10):1884-1893. doi: 10.1136/gutjnl-2021-324789. Epub 2021 Apr 26. — View Citation
Kister I, Krogsgaard M, Mulligan MJ, Patskovsky Y, Voloshyna I, Ferstler N, Zhovtis Ryerson L, Curtin R, Kim J, Tardio E, Rimler Z, Sherman K, Samanovic-Golden M, Cornelius A, Lieberman D, Solis S, Pedotti R, Raposo C, Priest J, Hawker K, Silverman GJ. Preliminary Results of Ongoing, Prospective Study of Antibody and TCell Responses to SARS-CoV-2 in Patients With MS on Ocrelizumab or Other Disease-Modifying Therapies. Presented at the 73rd Congress of the American Academy of Neurology (AAN) Virtual 2021; 17-22 April 2021. P15.014
Langer-Gould A, Smith JB, Li BH; KPSC MS Specialist Group. Multiple sclerosis, rituximab, and COVID-19. Ann Clin Transl Neurol. 2021 Apr;8(4):938-943. doi: 10.1002/acn3.51342. Epub 2021 Mar 30. — View Citation
Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 Vaccines at Pandemic Speed. N Engl J Med. 2020 May 21;382(21):1969-1973. doi: 10.1056/NEJMp2005630. Epub 2020 Mar 30. No abstract available. — View Citation
Möhn N, Konen FF, Pul R, Kleinschnitz C, Prüss H, Witte T, Stangel M, Skripuletz T. Experience in Multiple Sclerosis Patients with COVID-19 and Disease-Modifying Therapies: A Review of 873 Published Cases. J Clin Med. 2020 Dec 16;9(12). pii: E4067. doi: 10.3390/jcm9124067. Review. — View Citation
Parakkal D, Wooseob K, Paley MA, et al. Glucocorticoids and B Cell Depleting Agents Substantially Impair Immunogenicity of mRNA Vaccines to SARS-CoV-2 medRxiv 2021.04.05.21254656
Piñar Morales R, Ramírez Rivas MA, Barrero Hernández FJ. SARS-CoV-2 infection and seroprevalence in patients with multiple sclerosis. Neurologia (Engl Ed). 2021 Nov-Dec;36(9):698-703. doi: 10.1016/j.nrleng.2021.03.002. Epub 2021 Jun 1. — View Citation
Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, Bailey R, Swanson KA, Roychoudhury S, Koury K, Li P, Kalina WV, Cooper D, Frenck RW Jr, Hammitt LL, Türeci Ö, Nell H, Schaefer A, Ünal S, Tresnan DB, Mather S, Dormitzer PR, Sahin U, Jansen KU, Gruber WC; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec 31;383(27):2603-2615. doi: 10.1056/NEJMoa2034577. Epub 2020 Dec 10. — View Citation
Popescu BF, Pirko I, Lucchinetti CF. Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn). 2013 Aug;19(4 Multiple Sclerosis):901-21. doi: 10.1212/01.CON.0000433291.23091.65. Review. — View Citation
Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, Goepfert PA, Truyers C, Fennema H, Spiessens B, Offergeld K, Scheper G, Taylor KL, Robb ML, Treanor J, Barouch DH, Stoddard J, Ryser MF, Marovich MA, Neuzil KM, Corey L, Cauwenberghs N, Tanner T, Hardt K, Ruiz-Guiñazú J, Le Gars M, Schuitemaker H, Van Hoof J, Struyf F, Douoguih M; ENSEMBLE Study Group. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med. 2021 Jun 10;384(23):2187-2201. doi: 10.1056/NEJMoa2101544. Epub 2021 Apr 21. — View Citation
Sharifian-Dorche M, Sahraian MA, Fadda G, Osherov M, Sharifian-Dorche A, Karaminia M, Saveriano AW, La Piana R, Antel JP, Giacomini PS. COVID-19 and disease-modifying therapies in patients with demyelinating diseases of the central nervous system: A systematic review. Mult Scler Relat Disord. 2021 May;50:102800. doi: 10.1016/j.msard.2021.102800. Epub 2021 Jan 29. — View Citation
Shaw RH, Stuart A, Greenland M, Liu X, Nguyen Van-Tam JS, Snape MD; Com-COV Study Group. Heterologous prime-boost COVID-19 vaccination: initial reactogenicity data. Lancet. 2021 May 29;397(10289):2043-2046. doi: 10.1016/S0140-6736(21)01115-6. Epub 2021 May 12. Erratum in: Lancet. 2021 May 18;:. — View Citation
Spencer AJ, McKay PF, Belij-Rammerstorfer S, Ulaszewska M, Bissett CD, Hu K, Samnuan K, Blakney AK, Wright D, Sharpe HR, Gilbride C, Truby A, Allen ER, Gilbert SC, Shattock RJ, Lambe T. Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice. Nat Commun. 2021 May 17;12(1):2893. doi: 10.1038/s41467-021-23173-1. — View Citation
The combined use of AstraZeneca and Pfizer vaccines against SARS-CoV-2 offers a powerful immune response (isciii.es). https://www.isciii.es/Noticias/Noticias/Paginas/Noticias/Presentaci%c3%b3n-resultados-preliminares-CombivacS.aspx
Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintoré M, Traboulsee AL, Trojano M, Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018 Feb;17(2):162-173. doi: 10.1016/S1474-4422(17)30470-2. Epub 2017 Dec 21. Review. — View Citation
Weissert R. The immune pathogenesis of multiple sclerosis. J Neuroimmune Pharmacol. 2013 Sep;8(4):857-66. doi: 10.1007/s11481-013-9467-3. Epub 2013 May 10. Review. — View Citation
Winkelmann A, Loebermann M, Reisinger EC, Hartung HP, Zettl UK. Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol. 2016 Apr;12(4):217-33. doi: 10.1038/nrneurol.2016.21. Epub 2016 Mar 4. Review. — View Citation
Wu GF, Alvarez E. The immunopathophysiology of multiple sclerosis. Neurol Clin. 2011 May;29(2):257-78. doi: 10.1016/j.ncl.2010.12.009. Review. — View Citation
Zheng C, Kar I, Chen CK, Sau C, Woodson S, Serra A, Abboud H. Multiple Sclerosis Disease-Modifying Therapy and the COVID-19 Pandemic: Implications on the Risk of Infection and Future Vaccination. CNS Drugs. 2020 Sep;34(9):879-896. doi: 10.1007/s40263-020-00756-y. Review. — View Citation
* Note: There are 32 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Percent who test positive for COVID-19 spike protein antibodies following booster | Percentage of subjects who test positive for COVID-19 spike protein antibodies following a booster vaccination. | 4-6 weeks | |
Secondary | Comparison of COVID-19 spike protein antibodies based on booster received | Comparison of percentage of subjects who test positive for COVID-19 specific spike protein antibodies between those who receive homologous vs. heterologous boosters from baseline; | 4-6 weeks | |
Secondary | Comparison of COVID-19 spike protein antibodies based on disease-modifying treatment | Comparison of percentage of subjects who test positive for COVID-19 spike protein antibodies based on disease modifying treatment; | 4-6 weeks | |
Secondary | Correlation of COVID-19 spike protein antibodies with B and T cell levels and immunoglobulins | Correlation of COVID-19 spike antibody presence and levels based on B and T cell subsets and overall immune globulin levels. | 4-6 weeks |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05528666 -
Risk Perception in Multiple Sclerosis
|
||
Completed |
NCT03608527 -
Adaptive Plasticity Following Rehabilitation in Multiple Sclerosis
|
N/A | |
Recruiting |
NCT05532943 -
Evaluate the Safety and Efficacy of Allogeneic Umbilical Cord Mesenchymal Stem Cells in Patients With Multiple Sclerosis
|
Phase 1/Phase 2 | |
Completed |
NCT02486640 -
Evaluation of Potential Predictors of Adherence by Investigating a Representative Cohort of Multiple Sclerosis (MS) Patients in Germany Treated With Betaferon
|
||
Completed |
NCT01324232 -
Safety and Efficacy of AVP-923 in the Treatment of Central Neuropathic Pain in Multiple Sclerosis
|
Phase 2 | |
Completed |
NCT04546698 -
5-HT7 Receptor Implication in Inflammatory Mechanisms in Multiple Sclerosis
|
||
Active, not recruiting |
NCT04380220 -
Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-remitting Multiple Sclerosis
|
||
Completed |
NCT02835677 -
Integrating Caregiver Support Into MS Care
|
N/A | |
Completed |
NCT03686826 -
Feasibility and Reliability of Multimodal Evoked Potentials
|
||
Recruiting |
NCT05964829 -
Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis
|
N/A | |
Withdrawn |
NCT06021561 -
Orofacial Pain in Multiple Sclerosis
|
||
Completed |
NCT03653585 -
Cortical Lesions in Patients With Multiple Sclerosis
|
||
Recruiting |
NCT04798651 -
Pathogenicity of B and CD4 T Cell Subsets in Multiple Sclerosis
|
N/A | |
Active, not recruiting |
NCT05054140 -
Study to Evaluate Efficacy, Safety, and Tolerability of IMU-838 in Patients With Progressive Multiple Sclerosis
|
Phase 2 | |
Completed |
NCT05447143 -
Effect of Home Exercise Program on Various Parameters in Patients With Multiple Sclerosis
|
N/A | |
Recruiting |
NCT06195644 -
Effect of Galvanic Vestibular Stimulation on Cortical Excitability and Hand Dexterity in Multiple Sclerosis Patients
|
Phase 1 | |
Completed |
NCT04147052 -
iSLEEPms: An Internet-Delivered Intervention for Sleep Disturbance in Multiple Sclerosis
|
N/A | |
Completed |
NCT03591809 -
Combined Exercise Training in Patients With Multiple Sclerosis
|
N/A | |
Completed |
NCT03594357 -
Cognitive Functions in Patients With Multiple Sclerosis
|
||
Completed |
NCT03269175 -
BENEFIT 15 Long-term Follow-up Study of the BENEFIT and BENEFIT Follow-up Studies
|
Phase 4 |