Clinical Trials Logo

Clinical Trial Summary

Many people with multiple sclerosis (PwMS) have decreased balance and postural control, gait deficits, and a high frequency of falls. High fall rates and mobility impairments pose a significant risk to the independence and quality of life of PwMS. Therefore, effective interventions to improve balance and postural control are urgently needed to decrease the frequency of falls in PwMS. Balance training has been demonstrated to significantly improve postural control and gait in PwMS. One possible treatment modality to amplify the effects of balance training is transcranial direct current stimulation (tDCS), a non-invasive means to increase cortical excitability and potentially prime the brain for task specific learning. The cerebellum plays a vital role in balance and posture and may be an important target structure for tDCS studies seeking to reduce fall risk. Studies have shown that anodal cerebellar tDCS is effective in improving balance control in older adults with high fall risk and patients with chronic stroke. However, the most effective tDCS intensity and the duration of the effects on balance control has not been established. Moreover, no study has combined cerebellar tDCS and balance training to reduce fall risk in PwMS. The purpose of this study is to investigate the effects of cerebellar transcranial direct current stimulation (tDCS) on fall risk in people with relasping-remitting multiple sclerosis. We will conduct tDCS or SHAM followed by balance training on 4 consecutive days. We will evaluate fall risk with well-established functional tasks, such as the Berg Balance Scale, Timed Up and Go (TUG), the six minute walk test (6MWT), and static posturography. Prospective participants, men and women with relasping-remitting MS, will be recruited. To accomplish this study, 30 participants will be randomly assigned into 3 groups (2 mA tDCS, 4 mA tDCS, or SHAM). This study involves 4 daily visits at the Integrative Neurophysiology Lab at the same time of day for each subject and three follow-up visits. The duration of visit 1 will be approximately 2.5 hours and the duration of visits 2-4 will be approximately 1.5 hours. Visit 5, 6, and 7 will be approximately 24 hours, 1 week, and 3 weeks, respectively, after visit 4 and will last approximately 1.5 hours. During tDCS sessions, participants will undergo either Sham, 2 mA, and 4 mA tDCS for 20 minutes followed by balance training.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT04391023
Study type Interventional
Source University of Iowa
Contact
Status Completed
Phase N/A
Start date September 26, 2022
Completion date July 16, 2023

See also
  Status Clinical Trial Phase
Completed NCT05528666 - Risk Perception in Multiple Sclerosis
Completed NCT03608527 - Adaptive Plasticity Following Rehabilitation in Multiple Sclerosis N/A
Recruiting NCT05532943 - Evaluate the Safety and Efficacy of Allogeneic Umbilical Cord Mesenchymal Stem Cells in Patients With Multiple Sclerosis Phase 1/Phase 2
Completed NCT02486640 - Evaluation of Potential Predictors of Adherence by Investigating a Representative Cohort of Multiple Sclerosis (MS) Patients in Germany Treated With Betaferon
Completed NCT01324232 - Safety and Efficacy of AVP-923 in the Treatment of Central Neuropathic Pain in Multiple Sclerosis Phase 2
Completed NCT04546698 - 5-HT7 Receptor Implication in Inflammatory Mechanisms in Multiple Sclerosis
Active, not recruiting NCT04380220 - Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-remitting Multiple Sclerosis
Completed NCT02835677 - Integrating Caregiver Support Into MS Care N/A
Completed NCT03686826 - Feasibility and Reliability of Multimodal Evoked Potentials
Recruiting NCT05964829 - Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis N/A
Withdrawn NCT06021561 - Orofacial Pain in Multiple Sclerosis
Completed NCT03653585 - Cortical Lesions in Patients With Multiple Sclerosis
Recruiting NCT04798651 - Pathogenicity of B and CD4 T Cell Subsets in Multiple Sclerosis N/A
Active, not recruiting NCT05054140 - Study to Evaluate Efficacy, Safety, and Tolerability of IMU-838 in Patients With Progressive Multiple Sclerosis Phase 2
Completed NCT05447143 - Effect of Home Exercise Program on Various Parameters in Patients With Multiple Sclerosis N/A
Recruiting NCT06195644 - Effect of Galvanic Vestibular Stimulation on Cortical Excitability and Hand Dexterity in Multiple Sclerosis Patients Phase 1
Completed NCT04147052 - iSLEEPms: An Internet-Delivered Intervention for Sleep Disturbance in Multiple Sclerosis N/A
Completed NCT03591809 - Combined Exercise Training in Patients With Multiple Sclerosis N/A
Completed NCT03594357 - Cognitive Functions in Patients With Multiple Sclerosis
Completed NCT02845635 - MS Mosaic: A Longitudinal Research Study on Multiple Sclerosis