Multiple Sclerosis Clinical Trial
Official title:
Clinical Relevance of miR-142-3p as Potential Biomarker of Synaptopathy in Multiple Sclerosis
Inflammatory synaptopathy is a prominent pathogenic mechanism in multiple sclerosis (MS) and in its mouse model, which can cause excitotoxic damage by long-lasting excessive synaptic excitation and, consequentially, drives disease progression by leading to motor and cognitive deficits. As synaptopathy occurs early during the disease course and is potentially reversible, it represents an appealing therapeutic target in MS. Although reliable biomarkers of MS synaptopathy are still missing, recent researches highlighted miR-142-3p as a possible candidate. Indeed, miR-142-3p has been described to promote the IL-1beta-dependent synaptopathy by downregulating GLAST/EAAT1, a crucial glial transporter involved in glutamate homeostasis. Furthermore, mir-142-3p has been suggested as a putative negative MS prognostic factor and a target of current MS disease modifying therapies. The hypothesis of this study is that miR-142-3p represents a good biomarker for excitotoxic synaptopathy to predict MS course, and, possibly, treatment efficacy at individual level, including both pharmacological strategies and non-pharmacological interventions, like therapeutic transcranial magnetic stimulation (TMS) to ameliorate MS spasticity. To this aim, the role of miR-142-3p in MS synaptopathy, its potential impact on the efficacy of disease-modifying treatments currently used in MS therapy as well as the influence of genetic variants (SNPs) of miR-142-3p and GLAST/EAAT1 coding genes on the responsiveness to therapeutic TMS, will be further investigated in the study. By validating miR-142-3p as potential biomarker of synaptopathy, it is expect to improve MS prognosis and personalized therapies. Patients with MS, who will undergo neurological assessment, conventional brain MRI scan, and CSF and blood withdrawal for diagnostic and clinical reasons at the Neurology Unit of IRCCS INM-Neuromed will be enrolled in the study. Neurophysiological, biochemical and genetic parameters together with lower limb spasticity will be evaluated. Subjects, who will undergo blood sampling and/or lumbar puncture for clinical suspicions, later on not confirmed, will be recruited as control group. A subgroup of MS patients showing lower limb spasticity will be included in a two-week repetitive TMS stimulation protocol (iTBS) to correlate the patient responsiveness to this non-pharmacological treatment with MS-significant SNPs of both miR-142-3p and GLAST/EAAT1 coding genes.
Status | Recruiting |
Enrollment | 1000 |
Est. completion date | December 28, 2025 |
Est. primary completion date | December 28, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 65 Years |
Eligibility | Inclusion Criteria: - Ability to provide written informed consent to the study; - Diagnosis of MS definite according to 2010 revised McDonald's criteria (Polman et al., 2011); - Age range 18-65 (included); - EDSS range between 0 and 6 (included); - Ability to participate to the study protocol. Exclusion Criteria: - Inability to provide written informed consent to the study; - Altered blood count; - Female with positive pregnancy test at baseline or having active pregnancy plans in the following months after the beginning of the protocol; - Contraindications to gadolinium (MRI); - Contraindications to TMS; - Patients with comorbidities for neurological disease other than MS, included other neurodegenerative chronic diseases or chronic infections (i.e tubercolosis, infectious hepatitis, HIV/AIDS); - Unstable medical condition or infections; - Use of medications with increased risk of seizures (i.e. Fampridine, 4- Aminopyridine); - Concomitant use of drugs that may alter synaptic transmission and plasticity (cannabinoids, L-dopa, antiepiletics, nicotine, baclofen, SSRI, botulinum toxin). |
Country | Name | City | State |
---|---|---|---|
Italy | IRCCS Neuromed | Pozzilli | Isernia |
Lead Sponsor | Collaborator |
---|---|
Neuromed IRCCS |
Italy,
Bergman P, Piket E, Khademi M, James T, Brundin L, Olsson T, Piehl F, Jagodic M. Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016 Apr 20;3(3):e219. doi: 10.1212/NXI.0000000000000219. eCollection 2016 Jun. — View Citation
Centonze D, Koch G, Versace V, Mori F, Rossi S, Brusa L, Grossi K, Torelli F, Prosperetti C, Cervellino A, Marfia GA, Stanzione P, Marciani MG, Boffa L, Bernardi G. Repetitive transcranial magnetic stimulation of the motor cortex ameliorates spasticity in multiple sclerosis. Neurology. 2007 Mar 27;68(13):1045-50. doi: 10.1212/01.wnl.0000257818.16952.62. — View Citation
Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A, Musella A, D'Amelio M, Cavallucci V, Martorana A, Bergamaschi A, Cencioni MT, Diamantini A, Butti E, Comi G, Bernardi G, Cecconi F, Battistini L, Furlan R, Martino G. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci. 2009 Mar 18;29(11):3442-52. doi: 10.1523/JNEUROSCI.5804-08.2009. — View Citation
Gandhi R. miRNA in multiple sclerosis: search for novel biomarkers. Mult Scler. 2015 Aug;21(9):1095-103. doi: 10.1177/1352458515578771. Epub 2015 Apr 28. — View Citation
Gentile A, Musella A, Bullitta S, Fresegna D, De Vito F, Fantozzi R, Piras E, Gargano F, Borsellino G, Battistini L, Schubart A, Mandolesi G, Centonze D. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammation. 2016 Aug 26;13(1):207. doi: 10.1186/s12974-016-0686-4. — View Citation
Gentile A, Musella A, De Vito F, Fresegna D, Bullitta S, Rizzo FR, Centonze D, Mandolesi G. Laquinimod ameliorates excitotoxic damage by regulating glutamate re-uptake. J Neuroinflammation. 2018 Jan 5;15(1):5. doi: 10.1186/s12974-017-1048-6. — View Citation
Harris VK, Sadiq SA. Biomarkers of therapeutic response in multiple sclerosis: current status. Mol Diagn Ther. 2014 Dec;18(6):605-17. doi: 10.1007/s40291-014-0117-0. — View Citation
Housley WJ, Pitt D, Hafler DA. Biomarkers in multiple sclerosis. Clin Immunol. 2015 Nov;161(1):51-8. doi: 10.1016/j.clim.2015.06.015. Epub 2015 Jul 2. — View Citation
International Multiple Sclerosis Genetics Consortium; Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ, Pericak-Vance MA, Gregory SG, Rioux JD, McCauley JL, Haines JL, Barcellos LF, Cree B, Oksenberg JR, Hauser SL. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 2007 Aug 30;357(9):851-62. doi: 10.1056/NEJMoa073493. Epub 2007 Jul 29. — View Citation
Kiselev I, Bashinskaya V, Kulakova O, Baulina N, Popova E, Boyko A, Favorova O. Variants of MicroRNA Genes: Gender-Specific Associations with Multiple Sclerosis Risk and Severity. Int J Mol Sci. 2015 Aug 24;16(8):20067-81. doi: 10.3390/ijms160820067. — View Citation
Mandolesi G, De Vito F, Musella A, Gentile A, Bullitta S, Fresegna D, Sepman H, Di Sanza C, Haji N, Mori F, Buttari F, Perlas E, Ciotti MT, Hornstein E, Bozzoni I, Presutti C, Centonze D. miR-142-3p Is a Key Regulator of IL-1beta-Dependent Synaptopathy in Neuroinflammation. J Neurosci. 2017 Jan 18;37(3):546-561. doi: 10.1523/JNEUROSCI.0851-16.2016. — View Citation
Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, Sepman H, Marfia GA, Centonze D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol. 2015 Dec;11(12):711-24. doi: 10.1038/nrneurol.2015.222. Epub 2015 Nov 20. — View Citation
Meinl E, Meister G. MicroRNAs in the CSF: macro-advance in MS? Neurology. 2012 Nov 27;79(22):2162-3. doi: 10.1212/WNL.0b013e31827597d1. Epub 2012 Oct 17. No abstract available. — View Citation
Mori F, Codeca C, Kusayanagi H, Monteleone F, Boffa L, Rimano A, Bernardi G, Koch G, Centonze D. Effects of intermittent theta burst stimulation on spasticity in patients with multiple sclerosis. Eur J Neurol. 2010 Feb;17(2):295-300. doi: 10.1111/j.1468-1331.2009.02806.x. Epub 2009 Oct 23. — View Citation
Quintana E, Ortega FJ, Robles-Cedeno R, Villar ML, Buxo M, Mercader JM, Alvarez-Cermeno JC, Pueyo N, Perkal H, Fernandez-Real JM, Ramio-Torrenta L. miRNAs in cerebrospinal fluid identify patients with MS and specifically those with lipid-specific oligoclonal IgM bands. Mult Scler. 2017 Nov;23(13):1716-1726. doi: 10.1177/1352458516684213. Epub 2017 Jan 9. — View Citation
Stampanoni Bassi M, Gilio L, Buttari F, Maffei P, Marfia GA, Restivo DA, Centonze D, Iezzi E. Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach. Front Neurosci. 2017 Dec 13;11:710. doi: 10.3389/fnins.2017.00710. eCollection 2017. — View Citation
* Note: There are 16 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | CSF concentration of miR-142-3p | Quantification of CSF levels of miR-142-3p by qPCR analysis. Relative quantification will be performed by 2^(-ddCt) method. | T0 (enrollment); MS patients vs Control subjects | |
Primary | CSF concentration of soluble molecules | Quantification of CSF inflammatory molecules (TNF, IL-1ß, IL-6, IL-17, IFN-?, IL1ra, IL-22, IL-2, IL-2ra, IL-10, IL-4, IL-5, IL-13, IL-12p40, IL-8) by Luminex multiplex assays; neurofilaments, beta amyloid, tau proteins and growth factors (like NGF, PDGF and BDNF) by Luminex multiplex assays. Data will be expressed as pg/ml. | T0 (enrollment); MS patients vs Control subjects | |
Primary | Clinical disability assessment by Progression Index calculation for correlation analysis with CSF-miR-142-3p levels | Clinical disability will be certified by a qualified neurologist through the Progression Index (PI) calculated as EDSS combined with disease duration (EDSS/disease duration). Disease duration is estimated as the number of years from onset to the most recent assessment of disability and EDSS scale ranging from 0 to 10 in 0.5 unit increments that represent higher levels of disability. | Changes from T0 (enrollment) to T12 (12 months), T24 (24 months), T36 (36 months), T48 (48 months), T60 (60 months) and T72 (72 months) of follow-up | |
Primary | Clinical disability assessment by MSFC calculation for correlation analysis with CSF-miR-142-3p levels | The Multiple Sclerosis Functional Composite (MSFC) is a three-part composite clinical measure. Three variables were recommended as primary measures: Timed 25-Foot walk; 9-Hole Peg Test; and Paced Auditory Serial Addition Test (PASAT- 3"). The results from each of these three tests are transformed into Z-scores and averaged to yield a composite score for each patient at each time point.
There are 3 components: the average scores from the four trials on the 9-HPT; the average scores of two 25-Foot Timed Walk trials; the number correct from the PASAT-3. The scores for these three dimensions are combined to create a single score that can be used to detect change over time. This is done by creating Z-scores for each component. MSFC Score = {Zarm, average + Zleg, average + Zcognitive} / 3.0 (Where Zxxx =Z-score) Increased scores represent deterioration in the 9-HPT and the 25-Foot Timed Walk, whereas decreased scores represent deterioration in the PASAT-3. |
Changes from T0 (enrollment) to T12 (12 months), T24 (24 months), T36 (36 months), T48 (48 months), T60 (60 months) and T72 (72 months) of follow-up | |
Primary | Neuroradiological assessment for correlation analysis with CSF-miR-142-3p levels | By conventional MRI (1.5 Tesla) the following parameters will be evaluated: dual-echo proton density, FLAIR, T1-WI, T2-WI, and contrast-enhanced T1-WI after intravenous gadolinium (Gd) infusion (0.2 ml/kg). A new Gd+ lesion is defined as a typical area of hyperintense signal on postcontrast T1-WI. A new or newly enlarging lesion on T2-WI is defined as a rounded or oval lesion arising from an area previously considered as normal appearing brain tissue and/or showing an identifiable increase in size from a previously stable-appearing lesion. An active scan is defined as showing any new, enlarging or recurrent lesion(s) on postcontrast T1- and T2-WI. | Changes from T0 (enrollment) to T12 (12 months), T24 (24 months), T36 (36 months), T48 (48 months), T60 (60 months) and T72 (72 months) of follow-up | |
Primary | Neurophysiological assessments for correlation analysis with CSF-miR-142-3p levels | To assess synaptic excitability by SICI, ICF and LICI, motor thresholds will be calculated at rest as the lowest stimulus intensity able to evoke MEPs of about 50uV in 5 out of 10 consecutive trials (cts), and during a slight voluntary contraction of the target muscle (20-30% of the max voluntary contraction) as the lowest intensity able to evoke MEPs > 100uV in 5 out of 10 cts. The mean peak-to-peak amplitude of the conditioned MEP (cMEP), at each interstimulus interval (ISI), will be expressed as a percentage of the mean peak-to-peak amplitude of the test MEP (tMEP).
PAS-induced LTP-like plasticity will be expressed as changes of the average MEPs size at each time point after PAS compared to the average baseline MEPs size. Before PAS, 25 MEPs, evoked by single TMS pulses over the APB motor hot spot set at an intensity to obtain MEPs size of about 1mV peak-to-peak, will be collected. The same stimulus intensity will be used to obtain 25 MEPs 0', 30' and 60' after PAS. |
Changes from T0 (enrollment) to T12 (12 months), T24 (24 months), T36 (36 months), T48 (48 months), T60 (60 months) and T72 (72 months) of follow-up | |
Primary | Statistical correlation of miR-142-3p levels in MS CSF with disease and neurophysiological parameters | To investigate miR-142-3p association with synaptopathy-driven disease progression (measured in terms of clinical or radiological changes and TMS variables), multivariable generalized linear models (GLM) will be applied considering miR level in the CSF as an independent variable adjusting for demographical, clinical, neuroradiological, neurophysiological, biochemical factors and treatments.
In the case of unsuccessful identification, Principal Component Analysis (PCA) will be performed to evaluate the miR contribution with other molecules in the CSF (as cytokines, chemokines, growth factors, neurofilaments, beta amyloid and tau protein) to synaptopathy-driven disease progression to reduce the number of variable examined and increase the power of multivariate analysis. Statistical correlations will be repeated on the identified PCA components including miR-142-3p as part of the component. The significance level is established at p<0.05. |
T0 (enrollment), T12 (12 months), T24 (24 months), T36 (36 months), T48 (48 months), T60 (60 months) and T72 (72 months). | |
Secondary | Statistical correlation of miR-142-3p levels in MS CSF with patient's responsiveness to disease modifying therapies (DMTs). | miR-142-3p levels in the CSF will be assessed at T0, as reported above. The responsiveness to the DMT, who MS patients underwent as part of their clinical routine, will be evaluated according to clinical and neuroradiological parameters considered in the primary outcomes. Changes in such parameters will be evaluated at different time points during a six-year follow-up (T12-T0; T24-T0, T24-T12, etc). Both univariable and multivariable approaches and stratification of patients based on DMT treatment will be performed.The significance level is established at p<0.05. | Time Frame: T0 (enrollment); Changes from T0 (enrollment) to T12 (12 months), T24 (24 months), T36 (36 months), T48 (48 months), T60 (60 months) and T72 (72 months) of follow-up | |
Secondary | Genotyping of SNPs in SLC1A3 and MIR-142 genes for correlation analysis with disease parameters | Genetic screening will be performed on peripheral blood withdrawn from MS patients at T0. The following SNPs in MIR142 gene coding for miR-142-3p: rs550842646, rs377637047, rs562696473, rs529802001, rs547987105, rs573562920, rs544684689 and rs549927573, and in SLC1A3 gene coding for GLAST/EAAT1: rs137852620, rs2032892, rs2562582, rs4869675, rs4869676, rs2269272, rs2269273, rs1049522, rs1049524 and rs2731886, will be analyzed.
Univariable and multivariable correlations of minor allele presence of each screened SNP with clinical, neuroradiological and neurophysiological parameters, detected in the primary outcomes (T0, T12, T24, T36, T48, T60, T72), will allow the identification of SNPs relevant to disease progression. The significance level is established at p<0.05. |
Time Frame: T0 (enrollment); Changes from T0 (enrollment) to T12 (12 months), T24 (24 months), T36 (36 months), T48 (48 months), T60 (60 months) and T72 (72 months) of follow-up | |
Secondary | Lower limb spasticity assessment by H/M amplitude ratio for the therapeutic TMS substudy | Lower limb spasticity will be evaluated in all recruited MS patients at T0 and during 6-year-follow-up. A subgroup of MS patients with lower-limb spastic symptoms and carrying SNPs in in SLC1A3 and MIR-142 genes relevant to disease progression will undergo therapeutic iTBS protocol daily for two weeks (interventional substudy) and spasticity will be assessed also immediately before the beginning (W0) and after 2 weeks at the end of the protocol (W2).
The H/M amplitude ratio of the Soleus H reflex will be evaluated by EMG recordings as an index of spinal excitability. Compound motor action potentials (cMAPs) and H reflex will be evoked by electrical stimulation of the tibial nerve. The maximum amplitudes of the H reflex (H) and CMAP (M) potentials will be measured from peak to peak and H/M ratio was calculated by dividing the maximal amplitude of H wave by that of M wave. |
Changes from T0 (enrollment) to T12 (12 months), T24 (24 months), T36 (36 months), T48 (48 months), T60 (60 months) and T72 (72 months) of follow-up; Changes from the starting day (W0) to the end of the 2-week iTBS protocol (W2). | |
Secondary | Lower limb spasticity assessment by MAS score for the therapeutic TMS substudy | Lower limb spasticity will be evaluated in all recruited MS patients at T0 and during 6-year-follow-up. A subgroup of MS patients with lower-limb spastic symptoms and carrying SNPs in in SLC1A3 and MIR-142 genes relevant to disease progression will undergo therapeutic iTBS protocol daily for two weeks (interventional substudy) and spasticity will be assessed also immediately before the beginning (W0) and after 2 weeks at the end of the protocol (W2).
The Modified Ashworth Scale (MAS) assesses resistance during passive soft-tissue stretching ranging from 0 to 4 score. |
Changes from T0 (enrollment) to T12 (12 months), T24 (24 months), T36 (36 months), T48 (48 months), T60 (60 months) and T72 (72 months) of follow-up; Changes from the starting day (W0) to the end of the 2-week iTBS protocol (W2). | |
Secondary | Statistical correlation of response to iTBS treatment with MS-significant SNPs of both SLC1A3 and MIR-142. | Minor allele presence of each screened SNP in SLC1A3 and MIR-142, identified at T0 as relevant to disease progression (see above), will be correlated with changes in spasticity parameters (the H/M amplitude ratio of the Soleus H reflex and MAS score) upon the iTBS treatment (W2-W0). The significance level is established at p<0.05. | T0 (enrollment); Changes from the starting day (W0) to the end of the 2-week iTBS protocol (W2). |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT05528666 -
Risk Perception in Multiple Sclerosis
|
||
Completed |
NCT03608527 -
Adaptive Plasticity Following Rehabilitation in Multiple Sclerosis
|
N/A | |
Recruiting |
NCT05532943 -
Evaluate the Safety and Efficacy of Allogeneic Umbilical Cord Mesenchymal Stem Cells in Patients With Multiple Sclerosis
|
Phase 1/Phase 2 | |
Completed |
NCT02486640 -
Evaluation of Potential Predictors of Adherence by Investigating a Representative Cohort of Multiple Sclerosis (MS) Patients in Germany Treated With Betaferon
|
||
Completed |
NCT01324232 -
Safety and Efficacy of AVP-923 in the Treatment of Central Neuropathic Pain in Multiple Sclerosis
|
Phase 2 | |
Completed |
NCT04546698 -
5-HT7 Receptor Implication in Inflammatory Mechanisms in Multiple Sclerosis
|
||
Active, not recruiting |
NCT04380220 -
Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-remitting Multiple Sclerosis
|
||
Completed |
NCT02835677 -
Integrating Caregiver Support Into MS Care
|
N/A | |
Completed |
NCT03686826 -
Feasibility and Reliability of Multimodal Evoked Potentials
|
||
Recruiting |
NCT05964829 -
Impact of the Cionic Neural Sleeve on Mobility in Multiple Sclerosis
|
N/A | |
Withdrawn |
NCT06021561 -
Orofacial Pain in Multiple Sclerosis
|
||
Completed |
NCT03653585 -
Cortical Lesions in Patients With Multiple Sclerosis
|
||
Recruiting |
NCT04798651 -
Pathogenicity of B and CD4 T Cell Subsets in Multiple Sclerosis
|
N/A | |
Active, not recruiting |
NCT05054140 -
Study to Evaluate Efficacy, Safety, and Tolerability of IMU-838 in Patients With Progressive Multiple Sclerosis
|
Phase 2 | |
Completed |
NCT05447143 -
Effect of Home Exercise Program on Various Parameters in Patients With Multiple Sclerosis
|
N/A | |
Recruiting |
NCT06195644 -
Effect of Galvanic Vestibular Stimulation on Cortical Excitability and Hand Dexterity in Multiple Sclerosis Patients
|
Phase 1 | |
Completed |
NCT04147052 -
iSLEEPms: An Internet-Delivered Intervention for Sleep Disturbance in Multiple Sclerosis
|
N/A | |
Completed |
NCT03594357 -
Cognitive Functions in Patients With Multiple Sclerosis
|
||
Completed |
NCT03591809 -
Combined Exercise Training in Patients With Multiple Sclerosis
|
N/A | |
Completed |
NCT03269175 -
BENEFIT 15 Long-term Follow-up Study of the BENEFIT and BENEFIT Follow-up Studies
|
Phase 4 |