Clinical Trials Logo

Mitochondrial Diseases clinical trials

View clinical trials related to Mitochondrial Diseases.

Filter by:

NCT ID: NCT06376279 Enrolling by invitation - Epilepsy Clinical Trials

Genetic Diagnosis in Inborn Errors of Metabolism

Start date: April 29, 2008
Phase:
Study type: Observational

Inborn Errors of metabolism comprise a large number of rare conditions with a collective incidence of around 1/2000 newborns. Many disorders are treatable provided that a correct diagnosis can be established in time, and for many diseases novel therapies are being developed. Without treatment, many of the conditions result in early death or severe irreversible handicaps. The Centre for Inherited Metabolic Diseases, CMMS at Karolinska university hospital, is an integrated expert center where clinical specialists work closely together with experts in laboratory medicine, combining clinical genetics, clinical chemistry, pediatrics, neurology, and endocrinology. The center serves the whole Swedish population with diagnostics and expert advice on IEM and has a broad arsenal of biochemical investigations designed to detect defects in intermediary metabolism.

NCT ID: NCT06292182 Recruiting - Clinical trials for Mitochondrial Diseases

Red Light Ptosis Proof-of-Concept

Start date: February 8, 2024
Phase: N/A
Study type: Interventional

This study tests a new treatment to help with droopy eyelids (ptosis) and eye movement problems (squint) in children and young people with genetically confirmed mitochondrial conditions - using red-light. We use a torch to shine a red light through the closed eyelid for 3 minutes a day. The study will run for 18 months. We believe that this treatment could help strengthen the muscle in the eyelid to make it easier to open the eyes, and could also help some children with squint.

NCT ID: NCT06236451 Recruiting - Schizophrenia Clinical Trials

Atypical Antipsychotic-induced Mitochondrial Dysfunction in Patients With Schizophrenia

Start date: April 5, 2024
Phase: Phase 4
Study type: Interventional

Schizophrenia is a serious mental disorder with a global prevalence of 1%. The main cause of this condition is dysfunction in the signaling of neurotransmitters dopamine, serotonin, glutamate and Gamma-aminobutyric acid .According to recent research, a disturbed cellular energy state caused by mitochondrial dysfunction is thought to be a factor in the development of schizophrenia. The aim of the treatment of schizophrenia is to reduce symptoms and is mainly based on the monoamine hypothesis. Atypical antipsychotics are the first-line of treatment. Certain typical and atypical antipsychotic medications have been shown in prior preclinical research to decrease mitochondrial respiratory chain complex I activity. In contrast to individuals who were drug-naive, Casademont et al. found a significant decrease in complex I activity with haloperidol and risperidone in one cross-sectional observational study. Also, there is evidence suggesting that mitochondrial dysfunction is linked to the extrapyramidal side effects seen with antipsychotics. To date, there are no randomized controlled trials that assess the effect of these drugs on mitochondrial functions. Hence, the present randomized controlled trial has been planned to evaluate and compare the clinical and biochemical markers of mitochondrial dysfunction in schizophrenia patients treated with the atypical antipsychotics risperidone and aripiprazole.

NCT ID: NCT06213103 Recruiting - Clinical trials for Mitochondrial Disorders

Mitochondrial Disease-associated ImmunoDeficiencies

MitoID
Start date: January 30, 2024
Phase:
Study type: Observational

The study aims at characterizing the immune dysfunctions in patients with mitochondrial diseases. This has prognostic and diagnostic interest as well as potential for the discovery of new therapeutic strategies to alleviate disease burden.

NCT ID: NCT06191965 Not yet recruiting - Clinical trials for Cognitive Impairment

MitoQ for Early-phase Schizophrenia-spectrum Disorder and Mitochondrial Dysfunction

Start date: June 1, 2024
Phase: Phase 2/Phase 3
Study type: Interventional

The goal of this double-blind, placebo-controlled randomized clinical trial is to test the effect of 12 weeks of orally administered MitoQ (mitoquinol mesylate) supplementation on cognition in 50 people with early phase schizophrenia-spectrum disorders (E-SSD) who have mitochondrial dysfunction (called high risk, or HR). Cognitive impairments in SSD can cause significant disability. Yet, there are no effective treatments for cognitive impairments in SSD. It has been shown that alterations in a certain type of brain cell (parvalbumin interneurons, or PVI) underlie cognitive deficits in SSD. These PVI, which fire at a fast rate, utilize high amounts of energy from the mitochondria and are highly vulnerable to oxidative stress. MitoQ is an antioxidant. Research has shown that, in mice, MitoQ can reduce oxidative stress in the mitochondria. The main question that this clinical trial aims to answer is: • Does MitoQ supplementation, compared to placebo, improve cognition in HR patients? Secondary questions that this clinical trial aims to answer are the following: Does MitoQ supplementation, compared to placebo: - Improve positive and negative symptoms of SSD in HR patients? - Improve functioning in HR patients? - Improve/normalize blood markers of mitochondrial dysfunction in HR patients? The investigators will enroll 100 individuals with E-SSD. These enrolled participants will participate in an initial screening visit to determine if they qualify for the actual clinical trial. At the screening visit, the investigators will ask about psychiatric history to determine diagnosis; ask about medical history; do a physical exam; collect blood and urine samples; do a pregnancy test; and ask participants to bring in their current medications in their original packaging so it is known what they are taking. After the screening visit, the investigators will invite 50 HR patients (identified with a blood test) to continue with the clinical trial. Participants who qualify for the clinical trial will be asked to: - Take a supplement (MitoQ or placebo) once per day for 12 weeks in addition to their usual medications. - Come in for a study visit every 4 weeks over the 16-week study period. At these study visits, the investigators will do a physical exam; ask about symptoms and side effects; take blood and urine samples; and ask questions about general health and well-being, quality of life, mental health, emotional health, and mood. At visits 1 (baseline) and 4 (12 weeks), participants will also take a cognitive assessment.

NCT ID: NCT06185790 Recruiting - Clinical trials for Mitochondrial Diseases

MItochondrial Diabetes LOw Carb- Diet Study

MIDLOC
Start date: January 5, 2024
Phase: N/A
Study type: Interventional

In daily practice, doctors and dietitians in the clinic receive many questions in general from patients with a Mitochondrial Disease (MD), and more specific whether nutritional changes can alleviate their symptoms. Mitochondrial Inherited Diabetes and Deafness (MIDD) is due to a mitochondrial mutation at the m.3243A>G locus. Nutrition is known to affect disease burden in MIDD. Which diet does this best is unknown. Very low carbohydrate high fat diets improve mitochondrial function in isolated cells and in mice. Whether it does so in people with MIDD is unknown. Therefore, the objective of the study is to explore the effect of a low carbohydrate- high fat diet (LCHF) on clinical symptoms (Goal Attainment Scaling) and gut microbiome in patients with MIDD due to the m.3243A>G mutation. A total of 20 adult patients with the above mentioned characteristics will be randomized to receive first usual care during three months (control period), followed by LCHF dietary intervention for the next three months (intervention period), or vice versa.

NCT ID: NCT06080594 Recruiting - Clinical trials for Mitochondrial Diseases

Exercise-mediated Rescue of Mitochondrial Dysfunctions Driving Insulin Resistance

EX-MITO-DYS-IR
Start date: August 2024
Phase: N/A
Study type: Interventional

The overarching aim of this intervention study is to interrogate the interconnection between the muscle mitochondrial adaptations and the changes in muscle insulin sensitivity elicited by exercise training in individuals harbouring pathogenic mitochondrial DNA mutations associated with an insulin-resistant phenotype. In a within-subject parallel-group longitudinal design, participants will undergo an exercise training intervention with one leg, while the contralateral leg will serve as an inactive control. After the exercise intervention, patients will attend an experimental trial including: - A hyperinsulinemic-euglycemic clamp combined with measurements of femoral artery blood flow and arteriovenous difference of glucose - Muscle biopsy samples

NCT ID: NCT06080581 Recruiting - Clinical trials for Mitochondrial Diseases

Mitochondrial Dysfunctions Driving Insulin Resistance

MITO-DYS-IR
Start date: October 20, 2023
Phase:
Study type: Observational

The overarching aim of this observational study is to characterize muscle mitochondrial defects in individuals harboring pathogenic mitochondrial DNA (mtDNA) mutations associated with an insulin-resistant phenotype. In a case-control design, individuals with pathogenic mtDNA mutations will be compared to controls matched for sex, age, and physical activity level. Participants will attend a screening visit and two experimental trials including: - An oral glucose tolerance test - A hyperinsulinemic-euglycemic clamp combined with measurements of femoral artery blood flow and arteriovenous difference of glucose - Muscle biopsy samples

NCT ID: NCT06080568 Recruiting - Clinical trials for Mitochondrial Diseases

Human Mitochondrial Stress-driven Obesity Resistance

MITO-OB-RES
Start date: October 20, 2023
Phase:
Study type: Observational

The overarching aim of this observational study is to determine alterations in energy balance while exploring the underlying cellular mechanisms in human genetic models of mitochondrial stress. In a case-control design, individuals with pathogenic mitochondrial DNA mutations will be compared to healthy controls matched for sex, age, and physical activity level. Participants will attend a screening visit and an experimental trial including assessments of energy expenditure, appetite sensation, energy intake, and muscle and subcutaneous adipose tissue biopsy samples.

NCT ID: NCT06065852 Recruiting - Fabry Disease Clinical Trials

National Registry of Rare Kidney Diseases

RaDaR
Start date: November 6, 2009
Phase:
Study type: Observational [Patient Registry]

The goal of this National Registry is to is to collect information from patients with rare kidney diseases, so that it that can be used for research. The purpose of this research is to: - Develop Clinical Guidelines for specific rare kidney diseases. These are written recommendations on how to diagnose and treat a medical condition. - Audit treatments and outcomes. An audit makes checks to see if what should be done is being done and asks if it could be done better. - Further the development of future treatments. Participants will be invited to participate on clinical trials and other studies. The registry has the capacity to feedback relevant information to patients and in conjunction with Patient Knows Best (Home - Patients Know Best), allows patients to provide information themselves, including their own reported quality of life and outcome measures.