Clinical Trials Logo

Clinical Trial Summary

The overarching aim of this observational study is to characterize muscle mitochondrial defects in individuals harboring pathogenic mitochondrial DNA (mtDNA) mutations associated with an insulin-resistant phenotype. In a case-control design, individuals with pathogenic mtDNA mutations will be compared to controls matched for sex, age, and physical activity level. Participants will attend a screening visit and two experimental trials including: - An oral glucose tolerance test - A hyperinsulinemic-euglycemic clamp combined with measurements of femoral artery blood flow and arteriovenous difference of glucose - Muscle biopsy samples


Clinical Trial Description

Background: Peripheral insulin resistance is a major risk factor for metabolic diseases such as type 2 diabetes. Skeletal muscle accounts for the majority of insulin-stimulated glucose disposal, hence restoring insulin action in skeletal muscle is key in the prevention of type 2 diabetes. Mitochondrial dysfunction is implicated in the etiology of muscle insulin resistance. Also, as mitochondrial function is determined by its proteome quantity and quality, alterations in the muscle mitochondrial proteome may play a critical role in the pathophysiology of insulin resistance. However, insulin resistance is multifactorial in nature and whether mitochondrial derangements are a cause or a consequence of impaired insulin action is unclear. In recent years, the study of humans with genetic mutations has shown enormous potential to establish the mechanistic link between two physiological variables; indeed, if the mutation has a functional impact on one of those variables, then the direction of causality can be readily ascribed. Mitochondrial myopathies are genetic disorders of the mitochondrial respiratory chain affecting predominantly skeletal muscle. Mitochondrial myopathies are caused by pathogenic mutations in either nuclear or mitochondrial DNA (mtDNA), which ultimately lead to mitochondrial dysfunction. Although the prevalence of mtDNA mutations is just 1 in 5,000, the study of patients with mtDNA defects has the potential to provide unique information on the pathogenic role of mitochondrial derangements that is disproportionate to the rarity of affected individuals. The m.3243A>G mutation in the MT-TL1 gene encoding the mitochondrial leucyl-tRNA 1 gene is the most common mutation leading to mitochondrial myopathy in humans. The m.3243A>G mutation is associated with impaired glucose tolerance and insulin resistance in skeletal muscle. Most importantly, insulin resistance precedes impairments of β-cell function in carriers of the m.3243A>G mutation, making these patients an ideal human model to study the causative nexus between muscle mitochondrial dysfunction and insulin resistance. Thus, a comprehensive characterization of mitochondrial functional defects and the associated proteome alterations in patients harboring a mtDNA mutation associated with an insulin-resistant phenotype may elucidate the causal nexus between mitochondrial derangements and insulin resistance. Also, as mitochondrial dysfunction exhibits many faces (e.g. reduced oxygen consumption rate, impaired ATP synthesis, overproduction of reactive oxygen species, altered membrane potential), such an approach may clarify which features of mitochondrial dysfunction play a prominent role in the pathogenesis of insulin resistance. Objective: To characterize muscle mitochondrial defects in individuals harboring pathogenic mitochondrial DNA (mtDNA) mutations associated with an insulin-resistant phenotype. Study design: Case-control study in individuals with pathogenic mtDNA mutations (n=15) and healthy controls (n=15) matched for sex, age, and physical activity level. Endpoint: Differences between individuals with pathogenic mtDNA mutations and controls. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06080581
Study type Observational
Source Rigshospitalet, Denmark
Contact Matteo Fiorenza, Ph.D.
Phone +4535458748
Email matteo.fiorenza@regionh.dk
Status Recruiting
Phase
Start date October 20, 2023
Completion date December 2025

See also
  Status Clinical Trial Phase
Completed NCT03388528 - Low Residue Diet Study in Mitochondrial Disease N/A
Completed NCT04378075 - A Study to Evaluate Efficacy and Safety of Vatiquinone for Treating Mitochondrial Disease in Participants With Refractory Epilepsy Phase 2/Phase 3
Completed NCT03678740 - Diagnostic Odyssey Survey 2
Recruiting NCT06051448 - Promoting Resilience in Stress Management (PRISM) and Clinical-focused Narrative (CFN) Pilot in Adults With Primary Mitochondrial Disease (PMD). Phase 1/Phase 2
Completed NCT02909400 - The KHENERGY Study Phase 2
Completed NCT02398201 - A Study of Bezafibrate in Mitochondrial Myopathy Phase 2
Completed NCT03857880 - Identification of New Candidate Genes in Patients With Mitochondrial Disease by High Resolution Chromosome Analysis on DNA Chip
Completed NCT04165239 - The KHENERGYZE Study Phase 2
Completed NCT02284334 - Glycemic Index in Mitochondrial Disease
Recruiting NCT06080568 - Human Mitochondrial Stress-driven Obesity Resistance
Recruiting NCT04802707 - Deoxynucleosides Pyrimidines as Treatment for Mitochondrial Depletion Syndrome Phase 2
Completed NCT04580979 - Natural History Study of FDXR Mutation-related Mitochondriopathy
Completed NCT04594590 - Natural History Study of SLC25A46 Mutation-related Mitochondriopathy
Withdrawn NCT03866954 - Trial of Erythrocyte Encapsulated Thymidine Phosphorylase In Mitochondrial Neurogastrointestinal Encephalomyopathy Phase 2
Recruiting NCT04113447 - Mitochondrial Donation: An 18 Month Outcome Study.
Enrolling by invitation NCT04734626 - CrCest Study in Primary Mitochondrial Disease
Completed NCT03832218 - Executive Function Disorders and Anxio-depressive Symptomatology in Children and Adolescents With Mitochondrial Pathologies N/A
Terminated NCT02473445 - A Long-term Extension of Study RP103-MITO-001 (NCT02023866) to Assess Cysteamine Bitartrate Delayed-release Capsules (RP103) in Children With Inherited Mitochondrial Disease Phase 2
Recruiting NCT05012358 - Genomic Profiling of Mitochondrial Disease - Imaging Analysis for Precise Mitochondrial Medicine
Recruiting NCT04920812 - MITOMICS : a Multi-OMICS Approach for the Diagnosis of Mitochondrial Diseases