Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT04180748
Other study ID # 19-5749
Secondary ID
Status Completed
Phase
First received
Last updated
Start date November 25, 2019
Est. completion date March 20, 2021

Study information

Verified date March 2021
Source University Health Network, Toronto
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

The microbiome can affect skin health from the gut-skin axis, from environmental exposure, and topical treatments. Decreasing biodiversity of skin microbiota has been linked to inflammatory conditions, allergies, and skin health. This cross sectional study will be used to survey healthy volunteers and measure the density and diversity of skin flora of varying skin types. The aim of this study is to identify associations between the skin flora and characteristics of healthy skin types.


Description:

The microbiome can affect skin health from the gut-skin axis, from environmental exposure, and topical treatments. Decreasing biodiversity of skin microbiota has been linked to inflammatory conditions, allergies and skin health. Therefore, this cross sectional study will be used to survey healthy volunteers and measure the density and diversity of skin flora of varying skin types. This study will aim to determine if there are associations between the diversity and/or density of normal bacterial flora and (1) the different skin types (i.e. normal, dry, oily, combination, sensitive); (2) the different Fitzpatrick skin types (i.e. ivory; fair or pale; fair to beige with golden undertones; olive or light brown; dark brown; deeply pigmented dark brown to darkest brown): (3) the number of skin products used daily representing time spent on skin health (i.e. low:0-1, mid:2-4, high:5+). Participants will complete a survey in which they will identify their skin conditions and the number and type of skin products they use on their face as a part of their daily routine. In addition, this study will evaluate the potential of an autofluorescence image-guided device to capture differences in healthy human skin flora through autofluorescence. The MolecuLight i:X™ is used to detect bacteria in chronic wounds. Based on extensive preclinical and clinical studies, the i:X has demonstrated its capability at collecting autofluorescent images of wounds and detecting the presence and relative changes in connective tissue (e.g. collagen) content and bio-distribution involved in wound healing. It can also detect the presence and relative amounts of commensal and pathogenic bacteria within the wound based on autofluorescence alone (these bacteria are invisible to standard visualization with the naked eye using white light), thus providing a measure of infection status. The imaging device will be used to image skin from the cheek and forehead of healthy volunteers to compare the fluorescent characteristics of normal skin flora. The fluorescent images captured with the i:X™ will be compared against 16S RNA analysis of the skin microbiome and traditional microbiology techniques with selective and differential tests. In addition, non-selective agars will be used to grow bacteria according to the spatial topography of the skin, using a tape stripping method, with lightly adhesive 3M™Tegaderm wound dressings. This will serve as a "map" for fluorescent images by which to compare fluorescent features to bacterial species.


Recruitment information / eligibility

Status Completed
Enrollment 30
Est. completion date March 20, 2021
Est. primary completion date March 20, 2021
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Healthy male or female 18 years or older. - Able to provide consent - Identifies as having normal (n=6), oily (n=6), dry (n=6), combination (n=6), and/or sensitive (n=6) skin groups. Exclusion Criteria: - Treatment with topical or oral antibiotic(s) or antifungal(s) within 1 month of enrolment - Diagnosed with chronic conditions (excluding acne and dermatological conditions) - Treatment for a chronic condition - Diagnosed with bacterial/fungal infection within 1 month of enrolment - Treatment with an investigational drug within 1 month of enrolment - Allergies to antibiotics, antiseptics, tape, or adhesives - Inability to consent

Study Design


Related Conditions & MeSH terms


Intervention

Other:
fluorescence imaging with 405nm light
Each group will have images taken with an Health Canada approved device to capture images under white light and 405nm fluorescence with an mCherry filter. These images will not be used for diagnostics and will be analyzed for features which correlate to identified microbes from 16S RNA analysis and traditional microbiological technique. Groups are self identified by participants in order to capture a diverse population.

Locations

Country Name City State
Canada Princess Margaret Cancer Research Tower Toronto Ontario

Sponsors (1)

Lead Sponsor Collaborator
University Health Network, Toronto

Country where clinical trial is conducted

Canada, 

References & Publications (24)

Agren MS, Werthén M. The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. Int J Low Extrem Wounds. 2007 Jun;6(2):82-97. Review. — View Citation

Baumann L. Understanding and treating various skin types: the Baumann Skin Type Indicator. Dermatol Clin. 2008 Jul;26(3):359-73, vi. doi: 10.1016/j.det.2008.03.007. Review. — View Citation

Burne RA, Quivey RG Jr, Marquis RE. Physiologic homeostasis and stress responses in oral biofilms. Methods Enzymol. 1999;310:441-60. Review. — View Citation

Chamma E, Qiu J, Lindvere-Teene L, Blackmore KM, Majeed S, Weersink R, Dickie CI, Griffin AM, Wunder JS, Ferguson PC, DaCosta RS. Optically-tracked handheld fluorescence imaging platform for monitoring skin response in the management of soft tissue sarcoma. J Biomed Opt. 2015 Jul;20(7):076011. doi: 10.1117/1.JBO.20.7.076011. — View Citation

Cody YS, Gross DC. Characterization of Pyoverdin(pss), the Fluorescent Siderophore Produced by Pseudomonas syringae pv. syringae. Appl Environ Microbiol. 1987 May;53(5):928-34. — View Citation

Cox CD, Adams P. Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect Immun. 1985 Apr;48(1):130-8. — View Citation

DaCosta RS, Kulbatski I, Lindvere-Teene L, Starr D, Blackmore K, Silver JI, Opoku J, Wu YC, Medeiros PJ, Xu W, Xu L, Wilson BC, Rosen C, Linden R. Point-of-care autofluorescence imaging for real-time sampling and treatment guidance of bioburden in chronic wounds: first-in-human results. PLoS One. 2015 Mar 19;10(3):e0116623. doi: 10.1371/journal.pone.0116623. eCollection 2015. — View Citation

Davey ME, O'toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000 Dec;64(4):847-67. Review. — View Citation

Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. 1988 Jun;124(6):869-71. — View Citation

He SY, McCulloch CE, Boscardin WJ, Chren MM, Linos E, Arron ST. Self-reported pigmentary phenotypes and race are significant but incomplete predictors of Fitzpatrick skin phototype in an ethnically diverse population. J Am Acad Dermatol. 2014 Oct;71(4):731-7. doi: 10.1016/j.jaad.2014.05.023. Epub 2014 Jun 11. — View Citation

Kjeldstad B, Christensen T, Johnsson A. Porphyrin photosensitization of bacteria. Adv Exp Med Biol. 1985;193:155-9. — View Citation

Lee HJ, Jeong SE, Lee S, Kim S, Han H, Jeon CO. Effects of cosmetics on the skin microbiome of facial cheeks with different hydration levels. Microbiologyopen. 2018 Apr;7(2):e00557. doi: 10.1002/mbo3.557. Epub 2017 Nov 29. — View Citation

Luckey TD. Introduction to intestinal microecology. Am J Clin Nutr. 1972 Dec;25(12):1292-4. — View Citation

Ottolino-Perry K, Chamma E, Blackmore KM, Lindvere-Teene L, Starr D, Tapang K, Rosen CF, Pitcher B, Panzarella T, Linden R, DaCosta RS. Improved detection of clinically relevant wound bacteria using autofluorescence image-guided sampling in diabetic foot ulcers. Int Wound J. 2017 Oct;14(5):833-841. doi: 10.1111/iwj.12717. Epub 2017 Feb 28. — View Citation

Philipp-Dormston WK, Doss M. Comparison of porphyrin and heme biosynthesis in various heterotrophic bacteria. Enzyme. 1973;16(1):57-64. — View Citation

Prescott SL, Larcombe DL, Logan AC, West C, Burks W, Caraballo L, Levin M, Etten EV, Horwitz P, Kozyrskyj A, Campbell DE. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J. 2017 Aug 22;10(1):29. doi: 10.1186/s40413-017-0160-5. eCollection 2017. Review. — View Citation

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J; MetaHIT Consortium, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010 Mar 4;464(7285):59-65. doi: 10.1038/nature08821. — View Citation

Robinson CJ, Bohannan BJ, Young VB. From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev. 2010 Sep;74(3):453-76. doi: 10.1128/MMBR.00014-10. Review. — View Citation

Salem I, Ramser A, Isham N, Ghannoum MA. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front Microbiol. 2018 Jul 10;9:1459. doi: 10.3389/fmicb.2018.01459. eCollection 2018. Review. — View Citation

Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016 Aug 19;14(8):e1002533. doi: 10.1371/journal.pbio.1002533. eCollection 2016 Aug. — View Citation

Sohn E. Skin microbiota's community effort. Nature. 2018 Nov;563(7732):S91-S93. doi: 10.1038/d41586-018-07432-8. — View Citation

Stone FM, Coulter CB. PORPHYRIN COMPOUNDS DERIVED FROM BACTERIA. J Gen Physiol. 1932 Jul 20;15(6):629-39. — View Citation

Wu YC, Kulbatski I, Medeiros PJ, Maeda A, Bu J, Xu L, Chen Y, DaCosta RS. Autofluorescence imaging device for real-time detection and tracking of pathogenic bacteria in a mouse skin wound model: preclinical feasibility studies. J Biomed Opt. 2014 Aug;19(8):085002. doi: 10.1117/1.JBO.19.8.085002. — View Citation

Wu YC, Smith M, Chu A, Lindvere-Teene L, Starr D, Tapang K, Shekhman R, Wong O, Linden R, DaCosta RS. Handheld fluorescence imaging device detects subclinical wound infection in an asymptomatic patient with chronic diabetic foot ulcer: a case report. Int Wound J. 2016 Aug;13(4):449-53. doi: 10.1111/iwj.12451. Epub 2015 Apr 22. — View Citation

* Note: There are 24 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Other Imapact of cosmetic use on diversity of bacterial species across individuals with different cosmetic use (high, mid, low). (Number of CFU) Compare the frequency of specific bacterial species and bacterial families identified with microbiology and microbiome techniques between individuals with different skin care routines. February 2020
Other Imapact of cosmetic use on density of bacterial species across individuals with different cosmetic use (high, mid, low). (CFU/cm2) Compare the abundance of specific bacterial species and bacterial families identified with microbiology and microbiome techniques between individuals with different skin care routines per cm2 of area sampled. February 2020
Primary Bacterial diversity between individuals of each skin condition (i.e. normal, dry, oily, combination, sensitive). (Number of CFU) Frequency of unique colonies identified from microbiological and microbiome techniques between individuals of each skin condition (i.e. normal, dry, oily, combination, sensitive). February 2020
Primary Bacterial density (CFU/cm2) between individuals of each skin condition Abundance of bacterial colonies per cm2 of sampled area identified from microbiological and microbiome techniques between individuals of each skin condition (i.e. normal, dry, oily, combination, sensitive). February 2020
Primary MolecuLight i:X detection of density and diversity (green or red fluroescence/cm2) Abundance of green and/or red fluorescent detection with MolecuLight i:X per cm2 of sampled area between individuals of each skin condition. Frequency of green or red fluorescence per sample. February 2020
Secondary Identification of spatial distribution of bacterial species (CFU/cm2 of individual species) Abundance of unique species and bacterial families identified from microbiological and microbiome techniques between individuals of each skin condition (i.e. normal, dry, oily, combination, sensitive) and Fitzpatrick skin type per. Distribution of unique species and bacterial families across the area of sampling of individuals on Tegaderm "map". February 2020
Secondary Identification of spatial distribution of red/green fluorescence detected with MolecuLight i:X™ (red and green fluroescence/cm2) Abundance of unique fluorescent (green and red) detection with MolecuLight i:X™ between individuals of each skin condition (i.e. normal, dry, oily, combination, sensitive) and Fitzpatrick skin type. Distribution of red and green fluorescent signals across the area of sampling of individuals on Tegaderm "map". February 2020
See also
  Status Clinical Trial Phase
Recruiting NCT05414994 - Assessment of the Ocular Microbiome in Health and Disease
Completed NCT04769882 - Er:YAG Laser Effects on Microbial Population in Conservative Dentistry N/A
Completed NCT04766528 - Effect of Diet on the Microbiota / Endoccanabinoidome Axis in Response to Physical Activity N/A
Completed NCT03720314 - Microbiota Profiling in IBS
Completed NCT04122612 - Shaping Microbiome in the First 1,000 Days of Life
Not yet recruiting NCT05405634 - Microbiota in Chronic Anal Fissure and Its Association With Prognosis
Not yet recruiting NCT04895774 - Ex Vivo Study of the Mechanism of Action of Active Ingredients on the Intestinal Microbiota
Recruiting NCT05992688 - The Sweet Kids Study (Stevia on Weight and Energy Effect Over Time) N/A
Recruiting NCT05502380 - Broad-spectrum Antibiotic Prophylaxis in Tumor and Infected Orthopedic Surgery Phase 3
Completed NCT05175833 - Oral Probiotics and Secondary Bacterial Pneumonia in Severe COVID-19 Phase 2
Recruiting NCT04836910 - Microbiome and Polycystic Ovaries
Recruiting NCT05603650 - Effects of Mouthrinses on the Microbiome of the Oral Cavity and GI Tract N/A
Completed NCT04991818 - MSC - OneBiome UX Pilot Study N/A
Completed NCT05575050 - Impact of Teeth Brushing in Ventilated COVID-19 Patients. N/A
Completed NCT04374955 - The Effect of Probiotic Added to Maternal Diet on Infantile Colic and Intestinal Microbiota Content N/A
Recruiting NCT04140747 - Transfer of Strictly Anaerobe Microbes From Mother to Child
Recruiting NCT04111471 - The Use of A Prebiotic to Promote a Healthy Gut Microbiome in Pediatric Stem Cell Transplant Recipients N/A
Suspended NCT03220282 - The Milk, Growth and Microbiota Study N/A
Completed NCT03422562 - Probiotics and Intestinal Microbiome in Preterm Infants Phase 3
Recruiting NCT05695196 - Feasibility and Safety Study of Parent-to-Child Nasal Microbiota Transplant Phase 1