View clinical trials related to Mesothelioma Peritoneum.
Filter by:A Phase 1B/2A study will be conducted to establish safety and dose level of AMXT 1501 dicaprate in combination with IV DFMO, in cancer patients.
TC-510 is a novel cell therapy that consists of autologous genetically engineered T cells expressing two synthetic constructs: first, a single-domain antibody that recognizes human Mesothelin, fused to the CD3-epsilon subunit which, upon expression, is incorporated into the endogenous T cell receptor (TCR) complex and second, a PD-1:CD28 switch receptor, which is expressed on the surface of the T cell, independently from the TCR. The PD-1:CD28 switch receptor comprises the PD-1 extracellular domain fused to the CD28 intracellular domain via a transmembrane domain. Thus, the switch is designed to produce a costimulatory signal upon engagement with PD-L1 on cancer cells.
This study seeks to correlate microbiome sequencing data with information provided by patients and their medical records.
The investigator proposes to use the cardiac coherence technique to diminish anxiety before the surgery of a peritoneal carcinosis of colon or stomach or ovary and pseudomyxoma or peritoneal mesothelioma.
Gavocabtagene autoleucel (gavo-cel; TC-210) is a novel cell therapy that consists of autologous genetically engineered T cells expressing a single-domain antibody that recognizes human Mesothelin, fused to the CD3-epsilon subunit which, upon expression, is incorporated into the endogenous T cell receptor (TCR) complex. This Phase 1/2 study aims to establish the recommended Phase 2 dose (RP2D) and subsequently evaluate the efficacy of gavo-cel, with and without immuno-oncology agents, in patients with advanced mesothelin-expressing cancers, with overall response rate and disease control rate as the primary Phase 2 endpoints.
Phase I study to establish safety and feasibility of both intravenous administration and local delivery of lentiviral transduced huCART-meso cells with or without lymphodepletion.
Cytoreductive surgery (CRS) with hyperthermic intraperitoneal peroperative chemotherapy (HIPEC), indicated for patients with peritoneal metastases from digestive or gynecological malignancies alike, demonstrates a considerable impact on hemostatic metabolism, both on platelet and on coagulation level. The potential hemostatic interference in CRS and HIPEC is phase dependent. This study demonstrates the combined use of ROTEM (rotational thromboelastometry), PACT (platelet activation test) and CAT (thrombin generation test) assays during CRS and HIPEC with a follow-up of 7 days postoperative.