View clinical trials related to Meningioma.
Filter by:Meningioma is the most common central nervous system (CNS) tumor and accounts for approximately 30% of all CNS tumors. For meningioma recurring after surgery and radiation therapy, there is no effective medical therapy. Repeat surgery or radiation therapy may be possible, but they are temporizing measures with limited durable relief. PD-L1 expression in meningioma is increased for recurrent tumors or prior radiation therapy, and a recent case study reported significant reduction of an intracranial meningioma after 6 months of PD-L1 blockade. Radiation has been shown to augment immune response when combined with PD-L1 blockade. Proton radiation therapy has higher relative biological effectiveness (RBE) and may further amplify the above immunological signals. Combination of proton radiation therapy administered concurrently with PD-L1 inhibitor may maximize immune response for recurrent meningioma. However, confirmation of the increased immunogenicity or increased tumor infiltrating lymphocytes using the combination of radiation therapy and PD-L1 blockade have not been confirmed in patients. The proposed study will be a single institution, single-arm, open-label, phase Ib study to combine neoadjuvant avelumab (a PD-L1 inhibitor) with hypofractionated proton therapy of 20 CGE (cobalt gray equivalent) over 5 fractions followed by planned surgery for recurrent radiation-refractory meningioma. This study is designed to provide proof of concept to demonstrate on-target effect of the combination to increase immunogenicity by directly examining the resected tumor for immune response and to evaluate preliminary clinical efficacy
This trial studies how well gallium Ga 68-edotreotide (68Ga-DOTA-TOC) positron emission tomography (PET)/computer tomography (CT) works in imaging participants with neuroendocrine tumors. 68Ga-DOTA-TOC is used as a tracer chemical during PET/CT scans. Diagnostic procedures, such as 68Ga-DOTA-TOC PET/CT, may help find and diagnose neuroendocrine tumors.
This pilot clinical trial compares gadobutrol with standard of care contrast agents, gadopentetate dimeglumine or gadobenate dimeglumine, before dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) in diagnosing patients with multiple sclerosis, grade II-IV glioma, or tumors that have spread to the brain. Gadobutrol is a type of contrast agent that may increase DCE-MRI sensitivity for the detection of tumors or other diseases of the central nervous system. It is not yet known whether gadobutrol is more effective than standard of care contrast agents before DCE-MRI in diagnosing patients with multiple sclerosis, grade II-IV glioma, or tumors that have spread to the brain.
This will be a multi-center, proof of concept phase 0 study to assess the suppression of p-AKT in Vestibular Schwannoma (VS) and meningiomas by AR-42 in adult patients undergoing tumor resection. AR-42 is a small molecule which crosses the blood brain barrier (BBB) in rodents, but the investigators are not certain yet if it will penetrate human VS. Meningiomas are outside the BBB, but seem to be unusually resistant to all current medical treatments. The primary endpoint of the bioactivity of suppression of p-AKT by AR-42 was selected as drug activity seems more informative than bioavailability. Our preclinical data and others have shown dose dependent suppression of p-AKT by AR-42 in both VS and meningiomas.
This phase I trial studies the side effects and best dose of palbociclib isethionate in treating younger patients with central nervous system tumors that have grown, come back, or not responded to treatment. Palbociclib isethionate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This is an open label phase I clinical trial with two arms, representing single and fractionated radiation therapy (Figure 4.1). Within each arm the radiation dose is pre-determined and not escalated. Panobinostat will be administered orally 3 times a week for 2 weeks. Panobinostat will be dose-escalated independently in each arm. There is no intra-patient dose escalation. Recurrent gliomas (Arm A) will be treated according to the Jefferson protocol for re-irradiation, 10 fractions each of 3.5Gy delivered over 2 weeks. Panobinostat will be administered orally three times a week for 2 weeks, starting on day 1 or 2 of radiation therapy. High-grade meningiomas (Arm A) will be treated with 6 weeks/30 fractions of fractionated radiation therapy, to a total dose of between 54 Gy and 60 Gy in fractions of either 1.8Gy or 2Gy. Panobinostat will be administered orally three times a week for 2 weeks, starting on the day of 1st fraction of radiation. Large brain metastases (Arm B) will be treated with a single fraction of radiosurgery. Panobinostat will be administered orally three times a week for 2 weeks, starting on the day of radiation. The radiosurgery may be delivered by either LINAC, gamma-knife, cyber-knife or tomotherapy technology.
This clinical trial studies yoga therapy in treating patients with malignant brain tumors. Yoga therapy may improve the quality of life of patients with brain tumors
This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
In this multicenter, Phase II trial, the investigators plan to evaluate the activity of the combination of bevacizumab and everolimus in patients with recurrent, progressive meningioma following maximal treatment with surgical resection and local radiation therapy. Although these patients are relatively rare, there is currently no established standard of treatment for a disease that causes a great deal of morbidity, and that is eventually fatal.
This is a single-arm, phase II trial of SOM230 in patients with documented recurrent or progressive intracranial meningioma who have failed conventional therapy and are not candidates for complete surgical resection of their tumors and/or radiation at the time of study entry. At the time of the final analysis, all patients who are receiving treatment with SOM230 will complete the core phase of the study and will continue on the extension phase. During this time, additional data on response duration, PFS, and safety will be collected.