View clinical trials related to Medulloblastoma.
Filter by:Neuroendocrine tumours (NETs) are generally slow growing, but some can be aggressive and resistant to treatment. Compared to healthy cells, the surface of these tumor cells has a greater number of special molecules called somatostatin receptors (SSTR). Somatostatin receptor scintigraphy and conventional imaging are used to detect NETs. This study proposes 68Gallium(68Ga)-DOTATOC positron emission tomography/computed tomography (PET/CT) is superior to current imaging techniques. The goal is to evaluate the safety and sensitivity of 68Ga-DOTATOC PET/CT at detecting NETs and other tumors with over-expression of somatostatin receptors.
To provide DFMO in an expanded use setting to subjects with relapsed rare tumors with increased LIN28 expression or MYCN amplification or up regulation of ornithine decarboxylase.
This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the proteins needed for cell growth.
This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4 and CD8 T cells lentivirally transduced to express a HER2-specific chimeric antigen receptor (CAR) and EGFRt, delivered by an indwelling catheter in the tumor resection cavity or ventricular system in children and young adults with recurrent or refractory HER2-positive CNS tumors. A child or young adult with a refractory or recurrent CNS tumor will have their tumor tested for HER2 expression by immunohistochemistry (IHC) at their home institution or at Seattle Children's Hospital. If the tumor is HER2 positive and the patient meets all other eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meets none of the exclusion criteria, then they can be apheresed, meaning T cells will be collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets HER2-expressing tumor cells. The patient's newly engineered T cells will then be administered via the indwelling CNS catheter for two courses. In the first course they will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Following the two courses, patient's will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of HER2-specific CAR T cells can be manufactured to complete two courses of treatment with three doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that HER-specific CAR T cells safely can be administered through an indwelling CNS catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study safely can be delivered directly into the brain via indwelling catheter. Secondary aims of the study will include to evaluate CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple time points are available, also evaluate the degree of HER2 expression at diagnosis versus at recurrence.
Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: - To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. - To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: - To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.
This phase I trial studies the side effects and best dose of APX005M in treating younger patients with primary malignant central nervous system tumor that is growing, spreading, or getting worse (progressive), or newly diagnosed diffuse intrinsic pontine glioma. APX005M can trigger activation of B cells, monocytes, and dendritic cells and stimulat cytokine release from lymphocytes and monocytes. APX005M can mediate a direct cytotoxic effect on CD40+ tumor cells.
This phase I trial studies the side effects and best dose of ribociclib and everolimus and to see how well they work in treating patients with malignant brain tumors that have come back or do not respond to treatment. Ribociclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as everolimus, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ribociclib and everolimus may work better at treating malignant brain tumors.
Children with brain tumors are at risk for a number of psychological late effects, including neurocognitive and social deficits. This observational study focuses on assessment of social functioning, including social-cognitive and neurocognitive abilities, in survivors of pediatric brain tumors. This study will also assess the influence of medical factors, including diagnosis and age at diagnosis, on social functioning. PRIMARY OBJECTIVE: Examine the impact of social-cognitive and neurocognitive abilities on social functioning in survivors of pediatric brain tumors. SECONDARY OBJECTIVE: Assess the influence of medical factors such as diagnosis and age at diagnosis on the social functioning of survivors of pediatric brain tumors.
The primary goal of this prospective clinical trial is to evaluate the safety of PEP-CMV in patients with recurrent medulloblastoma and malignant glioma. Patients with histologically-proven medulloblastoma or malignant glioma who had received prior therapy for their initial diagnosis and subsequently had tumor recurrence/progression may be enrolled any time after recurrence/progression regardless of prior adjuvant therapy. PEP-CMV is a vaccine comprised of Component A, a synthetic long peptide (SLP) of 26 amino acid residues from human pp65. In May 2021, enrollment on the study was temporarily suspended due to delays in vialing the PEP-CMV study vaccine.
Recently, diagnosis and treatments for medulloblastoma becomes more complicated than before since the new World Health Organization (WHO) diagnosis criteria has put molecular marker onto an ever important position. Reports and studies revealed highly correlated connection between subgroups of medulloblastoma and patient outcomes. Children's Oncology Group (COG) has launched many new studies on molecular subgroups-based specific treatment trails. In China, children and adolescents with brain tumor have been treated variously for a long time in lack of standardized comprehensive treatments. Same poor situation in basic research and clinical studies makes the Chinese children with brain tumor hardly catch up with international level in molecular diagnosis and specific treatments. There are limited studies, which were conducted by immunohistochemistry for identifying medulloblastoma molecular subgroups, indicating the similar correlation of the subgroups and outcomes to world-wide reports. As the Children's Neuro-Oncology Group (CNOG) was established in China in May 2017, it makes studies from multiple centers in children's brain tumors become practical. And the availability of DNA methylation array, NanoString and other methods in medulloblastoma subgroup identification assures the quality of the method for this study.