View clinical trials related to Medulloblastoma.
Filter by:Medulloblastoma is a rapidly-growing tumor of the cerebellum, this area controls balance, posture and sophisticated motor functions like finer hand movements, speech, and swallowing. With the goal of, complete resection, major complications during tumor removal are usually caused by damage to the brain stem and injury to the lower cranial nerves.It has been reported that those children present Ataxia after resection. So the purpose of this study is to investigate the effectiveness of using a selected dual-task- training program to improve postural stability in those Children.
Medulloblastoma is a rapidly-growing tumor of the cerebellum, this area controls balance, posture and sophisticated motor functions like finer hand movements, speech, and swallowing. It has been reported that those children fall frequently so the purpose of this study is to investigate the effectiveness of balance and coordination training in these Children.
In this Phase I clinical study, the investigators plan to offer investigational treatment with the novel JAK2/STAT3 inhibitor WP1066 (Moleculin Biotech, Inc.) to pediatric patients with any progressive or recurrent malignant brain tumor that is refractory to standard treatment and is without known cure.
The purpose of this study is to determine the feasibility and safety of administering CMV RNA-pulsed dendritic cells (DCs), also known as CMV-DCs, to children and young adults up to 35 years old with nWHO Grade IV glioma, recurrent malignant glioma, or recurrent medulloblastoma. Evidence for efficacy will also be sought. This will be a phase 1 study evaluating CMV-DC administration with tetanus toxoid (Td) preconditioning and Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) adjuvant in children and young adults up to 35 years old with WHO grade IV glioma, recurrent malignant glioma, or recurrent medulloblastoma. This safety study will enroll a maximum of 10 patients.
Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: - To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. - To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: - To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.
This phase I trial studies the side effects and best dose of ribociclib and everolimus and to see how well they work in treating patients with malignant brain tumors that have come back or do not respond to treatment. Ribociclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as everolimus, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ribociclib and everolimus may work better at treating malignant brain tumors.
This is a Phase 2 peptide receptor radionuclide therapy trial of 90Y-DOTATOC in patients with somatostatin receptor positive tumors.
This study will assess the efficacy, safety and tolerability of pomalidomide in children and young adults aged 1 to < 21 years with recurrent or progressive primary brain tumors in one of four primary brain tumor types: high-grade glioma (HGG), medulloblastoma, ependymoma and diffuse intrinsic pontine glioma (DIPG).
The purpose of the study is to confirm the safety of the selected dose and potential toxicity of oncolytic poliovirus (PV) immunotherapy with PVSRIPO for pediatric patients with recurrent WHO grade III or IV malignant glioma, but evidence for efficacy will also be sought. The primary objective is to confirm the safety of the selected dose of PVSRIPO when delivered intracerebrally by convection-enhanced delivery (CED) in children with recurrent WHO Grade III malignant glioma (anaplastic astrocytoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma, anaplastic pleomorphic xanthoastrocytoma) or WHO Grade IV malignant glioma (glioblastoma, gliosarcoma). A secondary objective is to estimate overall survival (OS) in this population.
This is a three arm Phase I study within the Pacific Pediatric Neuro-Oncology Consortium (PNOC). This study will look to determine the safety and recommended phase 2 dose of the modified measles virus (MV-NIS) in children and young adults with recurrent medulloblastoma or atypical teratoid rhabdoid tumor (ATRT).