Clinical Trials Logo

Clinical Trial Summary

Inspiratory Muscle Training(IMT) increases the strength and endurance of the inspiratory muscles, exercise capacity, quality of life and reduces the perception of dyspnea. It has been reported in the literature that it also has an effect on mechanical ventilated patients in the intensive care unit. In patients on mechanical ventilation, IMT is applied with modification of trigger sensitivity and with an external device. The aim of this study is to compare the effects of inspiratory muscle training with external device and MV modification on respiratory muscle strength and intubation time


Clinical Trial Description

The intensive care unit (ICU) is the unit where patients with acute and life-threatening organ dysfunction or at risk are treated. Various technologies are used to support organ systems, especially the lungs, cardiovascular system, and kidneys. Mechanical ventilation (MV) device is the most important of these technologies. The device is clinically used in patients who need assistance to maintain adequate alveolar ventilation. Although MV is a life-saving intervention in respiratory failure, both short-term and longterm harmful consequences have been proven. Patients are weaned from mechanical ventilation when they begin to effective breathing on their own. However, he has persistent problems during his stay at the MV. Prolongation of the time spent on mechanical ventilation; It prolongs hospital stay and increases mortality and morbidity with many secondary pathologies ranging from pneumonia to polyneuropathy to delirium. As a result of all these, MV of the patient may cause reused. Physiotherapy is a very important component in the treatment of ICU patients, with both short-term and long-term advantages. Respiratory physiotherapy provides positive changes in hemodynamic and respiratory physiological parameters. Chest physiotherapy methods such as various chest manipulations, chest vibration and percussion, manual hyperinflation, postural drainage and various coughing techniques can be applied together or separately to prevent pulmonary complications in ICU patients. Techniques are used in mechanically ventilated patients to maintain airway clearance, reduce work of breathing, expand lungs, and prevent complications. Inspiratory muscle training (IMT), one of the respiratory physiotherapy applications used, is a technique used to increase the strength and endurance of the diaphragm and other accessory inspiratory muscles. In the ICU, inspiratory muscle training is achieved through devices that apply resistance or load to the inspiratory muscles, or through modification of the mechanical ventilator. The aim of this study is to compare the effects of inspiratory muscle training with external device and MV modification on respiratory muscle strength and intubation time. This prospective study will be conducted in Goztepe Prof. Dr. Suleyman Yalcın Cıty Hospıtal Hospital, Intensive Care Unit. Thirty-eight mechanically ventilated patients will be included in the study and randomly divided into two groups. In the MV group(MV-GR)(n=19), will be applied IMT with MV modification in addition to conventional physiotherapy, while in the external device group (E-GR) (n=19), IMT will be applied with an additional external device to conventional physiotherapy. P-FIT scale will be used for evaluation criteria, maximal inspiratory pressure, rapid shallow breathing index, oxygenation index, tidal volume, minute ventilation, weaning success values and functional status. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06046690
Study type Interventional
Source Saglik Bilimleri Universitesi
Contact Esra Pehlivan, Ass.Prof.
Phone 0905058527913
Email esra.pehlivan@sbu.edu.tr
Status Recruiting
Phase N/A
Start date November 1, 2023
Completion date November 15, 2024

See also
  Status Clinical Trial Phase
Completed NCT05921656 - Construction and Evaluation of Airway Leakage Risk Model of Patients With Endotracheal Tube
Recruiting NCT03941002 - Continuous Evaluation of Diaphragm Function N/A
Withdrawn NCT04288076 - The Brain and Lung Interaction (BALI) Study N/A
Completed NCT03031860 - Semi-quantitative Cough Strength Score (SCSS) N/A
Completed NCT02545621 - A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
Completed NCT02312869 - Local Assessment of Management of Burn Patients N/A
Completed NCT01885442 - TryCYCLE: A Pilot Study of Early In-bed Leg Cycle Ergometry in Mechanically Ventilated Patients N/A
Completed NCT01204281 - Proportional Assist Ventilation (PAV) in Early Stage of Critically Ill Patients Phase 4
Terminated NCT01059929 - Dexmedetomidine Versus Propofol in the Medical Intensive Care Unit (MICU) Phase 4
Completed NCT00824239 - Intermittent Sedation Versus Daily Interruption of Sedation in Mechanically Ventilated Patients Phase 3
Completed NCT00529347 - Mechanical Ventilation Controlled by the Electrical Activity of the Patient's Diaphragm - Effects of Changes in Ventilator Parameters on Breathing Pattern Phase 1
Unknown status NCT00260676 - Protective Ventilatory Strategy in Potential Organ Donors Phase 3
Terminated NCT00205517 - Sedation and Psychopharmacology in Critical Care N/A
Completed NCT03281785 - Ultrasound of Diaphragmatic Musculature in Mechanically Ventilated Patients. N/A
Recruiting NCT04110613 - RCT: Early Feeding After PEG Placement N/A
Completed NCT04410783 - The Emergency Department Sedation Pilot Trial N/A
Recruiting NCT04821453 - NAVA vs. CMV Crossover in Severe BPD N/A
Completed NCT03930147 - Ventilation With ASV Mode in Children N/A
Recruiting NCT05029167 - REstrictive Versus LIberal Oxygen Strategy and Its Effect on Pulmonary Hypertension After Out-of-hospital Cardiac Arrest (RELIEPH-study) N/A
Recruiting NCT04849039 - Lung Microbiota and VAP Development (PULMIVAP)