Clinical Trials Logo

Magnetic Resonance Spectroscopy clinical trials

View clinical trials related to Magnetic Resonance Spectroscopy.

Filter by:
  • None
  • Page 1

NCT ID: NCT06376500 Not yet recruiting - Clinical trials for Transcranial Direct Current Stimulation

Effects of tDCS for Enhancing Cognitive Function in Individuals With Persistent Post-Concussion Syndrome

Start date: June 2024
Phase: N/A
Study type: Interventional

Globally, 10 million new traumatic brain injury (TBI) cases are estimated annually, with mild traumatic brain injury (mTBI) accounting for 75-90% of all TBI cases. It is estimated that 40-80% of individuals with mTBI may experience the post-concussion syndrome (PCS), which is characterized by a range of physical, cognitive, and emotional symptoms. Although the underlying basis of cognitive dysfunction of patients with persistent PCS remains to be clarified, converging evidence shows that the clinical symptoms is underpinned by abnormal neural information processing as a result of axonal injury due to mTBI. Recent studies have demonstrated abnormalities in both structural and functional cortical connectivity, and a loss of cortical excitability-inhibitory (E/I) balance after TBI. Yet, there is no consensus for treating chronic symptoms of concussion, and PCS remains a chronic and highly disabling condition. One potential treatment option is transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that has been shown to modify behavior by enhancing connectivity between targeted brain areas. However, research on the therapeutic effect of tDCS on PCS symptoms is limited, and the neurologic mechanisms underlying its effects are not well understood. The proposed study aims to address these knowledge gaps by examining the effects of tDCS on the central nervous system function in patients with PCS, with a specific focus on functional cortical connectivity and cognitive functions such as processing speed and executive function. The study also aims to add value to existing evidence by potentially opening new directions for designing intervention programs for the treatment of PCS after mTBI.

NCT ID: NCT05939362 Recruiting - Alzheimer Disease Clinical Trials

New Imaging Biomarkers Predictive of MA Progression

MR7T-PRADA
Start date: October 2, 2023
Phase: N/A
Study type: Interventional

The pathophysiology of AD is complex. In addition to amyloid plaques and neurofibrillary degeneration, there is a metabolic alteration of the energy pathways, oxidative phosphorylation and glycolysis, which are involved in brain function. Several authors have shown a series of early metabolic dysregulations via an increase in phosphorylation at the origin of neuronal death. Ultra-high field imaging (7T MRI) may allow, with its better spatial resolution and advanced imaging techniques, to shed light on the mechanisms of progression of Alzheimer's disease. A Magnetic Resonance Spectroscopy (MRS) examination can be coupled to brain MRI without additional risk for the patient. Multinuclear 1H-31P metabolic imaging is a promising tool that can provide information on the metabolic evolutionary profile of AD. Thus, we propose a longitudinal study in patients with early-stage AD on 7T MRI-MRS.

NCT ID: NCT05491031 Recruiting - Multiple Sclerosis Clinical Trials

MRI Biomarkers Predictive of Disability Progression in Patients With Multiple Sclerosis

Start date: April 25, 2023
Phase: N/A
Study type: Interventional

The transition from relapsing-remitting multiple sclerosis to secondarily progressive multiple sclerosis (SPMS) is difficult to identify. Typically, SPMS is diagnosed retrospectively, with a significant delay, on the basis of a clinical history of progressive worsening, independent of relapses. Thus, SPMS is often associated with a considerable period of diagnostic uncertainty. The use of ultra-high field imaging can shed light on the mechanisms of disability progression thanks to its better spatial resolution and advanced imaging techniques. The new morphological imaging techniques make it possible to visualize chronic inflammatory lesions and to evaluate their evolution. It also allows for the precise measurement of brain atrophy, a reference in the evaluation of neurodegeneration. Metabolic imaging via proton spectroscopy allows the analysis of several promising cerebral metabolites that can provide information on cellular energy metabolism, mitochondrial function, or oxidative stress, and can help identify tissues at risk of neurodegeneration. Sodium imaging can provide information on axonal energy metabolism before the occurrence of stable and irreversible axonal damage. This technique is promising as an early marker of neurodegeneration.

NCT ID: NCT05165537 Recruiting - Clinical trials for Magnetic Resonance Spectroscopy

Non-Invasive Monitoring Of Metabolite Levels Using Novel And Adapted MR Spectroscopy Techniques

NIMM_MRS
Start date: March 1, 2022
Phase: N/A
Study type: Interventional

This Swiss National Science Foundation (SNF) funded project and the linked European project aim - to improve magnetic resonance (MR) methods, specifically MR spectroscopy and metabolic imaging (making them more sensitive and accurate - also less dependent on motion), - to extend them (making previously unobservable metabolites visible) and also - to make them more stable (suitable for routine clinical use). Magnetic resonance spectroscopy (MRS) is closely related to the widely used magnetic resonance imaging (MRI). Both methods are based on the same physical effect and are performed on the same equipment. However, while MRI mainly images the anatomy inside the body, MRS gives us information about the metabolism of the tissue. The main goal of this study is to develop and improve methods of MRS to better measure the concentrations of endogenous substances without actual intervention. MRS methodology development is performed in 4 steps: 1. A new method is developed and optimized theoretically and in sample preparations (solutions of chemicals). 2. The new methodology is evaluated in single healthy volunteers and optimized step by step for the conditions of use in the human body. 3. The methodology in evaluated in small groups of healthy volunteers (measurement accuracy and range of variation in healthy volunteers). 4. Feasibility is studied in different situations with possibly different metabolic situations (e.g. awake versus asleep or before and after muscular exertion). For this purpose, about 100 subjects will be measured for different subprojects. Thus, among other things, one determines the measurement accuracy and also normal values in healthy subjects for the assessment of diseases in future studies.

NCT ID: NCT03863041 Completed - Alzheimer Disease Clinical Trials

Study of Phosphorylated Metabolism Profile as Predictive Biomarker of Cognitive Decline in Memory Complaint.

Start date: April 8, 2019
Phase: N/A
Study type: Interventional

Alzheimer disease is a frequent disease in the late ages that results in global alteration of cognitive functions. In which memory complaint can be isolated in the early stages. Physiopathology of neuronal degenerescence in Alzheimer disease is complex, two main histological lesions are known, amyloid plaques and neurofibrillar tangles. Beyond the histological knowledge, alterations of neuronal metabolism are described such as oxydative phosphorylation and glycolytic pathway. These metabolism alterations are involved in neuronal death. Multi-nucleus magnetic resonance spectroscopy is a non-invasive non-irradiant imagery technique already used in routine. This technic allows the phosphoenergetic pool assessment, that inform about cellular metabolism. The aim of the study is to explore the phosphorylated metabolism patterns as predictive biomarkers of cognitive decline in patients with a memory complaint diagnosed.

NCT ID: NCT03840369 Completed - Clinical trials for Stress Disorders, Post-Traumatic

Pathophysiological Understanding and Treatment of PTSD: an rTMS Approach

PTSD
Start date: June 1, 2020
Phase: N/A
Study type: Interventional

In Canada, the prevalence of PTSD is approximately 12%, similar to Canadian military personnel. Current treatments for PTSD are limited in efficacy and durability - indicating a dire need for novel interventions in this population. Transcranial magnetic stimulation (TMS) has a high degree of safety and has been studied as an intervention for many mental health and neurological conditions; even showing initial promise for PTSD. We propose to study this further in a randomized sham controlled trial of TMS for PTSD.

NCT ID: NCT03409770 Active, not recruiting - Clinical trials for Neonatal Encephalopathy

Optimising the Duration of Cooling in Mild Encephalopathy

COMET
Start date: October 10, 2019
Phase: N/A
Study type: Interventional

Phase II randomised control trial of whole body cooling in mild neonatal encephalopathy.

NCT ID: NCT01827527 Recruiting - Validation Studies Clinical Trials

Magnetic Resonance & Optical Spectroscopy Validation

Start date: March 2013
Phase:
Study type: Observational

The purpose of this study is to develop and refine techniques for using magnetic resonance and optical spectroscopy to investigate how your body uses energy.