View clinical trials related to Lung Injury.
Filter by:The aim of this study is to evaluate the potential usefulness of lung ultrasound to assess the size and perfusion of consolidation and explore their relationships with clinical outcome.
Mechanical ventilation can lead to diaphragm and lung injury. During mechanical ventilation, the diaphragm could be completely rested or it could be overworked, either of which may cause diaphragm injury. Mechanical stress and strain applied by mechanical ventilation or by the patient's own respiratory muscles can also cause injury to the lungs. Diaphragm and lung injury are associated with increased morbidity and mortality. Throughflow is a novel system that can reduce dead space without the need to increase the tidal ventilation, reducing the ventilatory demands and respiratory drive.
Analgosedation is usually given to critically ill patients admitted in ICU. Fentanyl is the most common agent used for this purpose. For sedative agent, midazolam and propofol are commonly administered. However, too much sedation is apparently associated with increased duration of mechanical ventilation, prolonged ICU stay, and increased mortality. In mechanically ventilated patients, mechanical power is the respiratory mechanic that can predict clinical outcomes including mortality in both ARDS and non-ARDS patients. Previous study demonstrated that sedating mechanically ventilated patients with propofol could decreased mechanical power. This was possibly associated with improved clinical outcomes in these patients. At present, there is no clinical study investigating effects of inhalation sedation on mechanical power and clinical outcomes in mechanically ventilated patients.
We hypothesize that early and continuous administration of oxygen via high flow nasal cannula in patients with lung contusion and non-severe acute lung injury might reduce the incidence of intubation and hold the deterioration of pulmonary functions.
Oxygen is the most commonly administered therapy in critical illness. Accumulating evidence suggests that patients often achieve supra-physiological levels of oxygenation in the critical care environment. Furthermore, hyperoxia related complications following cardiac arrest, myocardial infarction and stroke have also been reported. The underlying mechanisms of hyperoxia mediated injury remain poorly understood and there are currently no human in vivo studies exploring the relationship between hyperoxia and direct pulmonary injury and inflammation as well as distant organ injury. The current trial is a mechanistic study designed to evaluate the effects of prolonged administration of high-flow oxygen (hyperoxia) on pulmonary and systemic inflammation. The study is a randomised, double-blind, placebo-controlled trial of high-flow nasal oxygen therapy versus matching placebo (synthetic medical air). We will also incorporate a model of acute lung injury induced by inhaled endotoxin (LPS) in healthy human volunteers. Healthy volunteers will undergo bronchoalveolar lavage (BAL) at 6 hours post-intervention to enable measurement of pulmonary and systemic markers of inflammation, oxidative stress and cellular injury.
Up to this day, little is known whether the extent of brain damage in patients with SAH correlates with the degree neurogenic myocardial injury and neurogenic lung injury. This is a prospective observational study designed to asses relationship between catecholamine surge and development of myocardial and lung injury in subarachnoid haemorrhage patients.
In patients with acute hypoxemic respiratory failure (AHRF), High Flow Nasal Therapy (HFNT) improves oxygenation, tolerance, and decreases work of breathing as compared to standard oxygen therapy by facemask. The hypothesis is that this flow challenge (ROX index variation from 30 to 60L/min) could be used as a test for assessing changes in lung aeration, analyzed by the variation in end expiratory lung volume (ΔEELV), in patients treated with HFNC. It may allow to personalize the flow settings during HFNC. In this sense, an increase in EELV will be observed with higher flows in responders and, therefore, these participants may benefit from increasing the flow. In contrast, to increase the flow in non-responders (no significant increase in EELV with higher flows) increase the risk of patient self-inflicted lung injury (P-SILI).
Preterm infants are randomized to received either Intra-tracheal instillation of budesonide using surfactant as vehicle or a placebo. Intra-tracheal instillation of budesonide using surfactant as vehicle would facilitate its delivery to the periphery of the lung and would inhibit lung inflammation and mitigate acute lung injury.
This is an observational - data and specimen collection study. There have been increasing reports of vaping-induced lung injury, including severe lung injury and rare cases of death. The mechanism by which vaping contributes to lung injury in susceptible persons is unknown, as is impact on chronic lung disease. The investigators aim to identify individuals with chronic electronic nicotine delivery device (ENDD) exposure and matched controls within our ongoing cohort of HIV+ and HIV-uninfected individuals, collect PFT data, bank respiratory and stool samples and collect clinical data for studies of clinical risk, inflammation, biomarkers, and the microbiome in the identification and modification of risk of progression to lung injury or chronic pulmonary disease.
This is a randomized, double-blind, placebo controlled, multicenter study to compare the efficacy and safety of L-citrulline versus placebo in patients undergoing surgery for congenital heart defects. Eligible patients undergoing repair of a large unrestrictive ventricular septal defect (VSD), a partial or complete atrioventricular septal defect (AVSD), or an ostium primum atrial septal defect (primum ASD) will be eligible for enrollment.