View clinical trials related to Lung Diseases.
Filter by:The purpose of this study is to assess the effect of L-menthol on breathlessness in patients with chronic obstructive pulmonary disease (COPD).
Introduction: Respiratory diseases are associated with high rate of morbidity and mortality in Brazil. Cardiopulmonary rehabilitation through respiratory muscle training, aerobic training and strengthening of upper and lower limbs emerges as one of the resources available for the treatment and monitoring of patients with respiratory diseases. To add in this perspective, the application of HD-tDCS induces significant neurophysiological and clinical effects in several body systems. Objective: To identify the chronic effects of non-invasive neurostimulation associated with the rehabilitation of patients with respiratory disorders. Material and methods: This is a pilot study, quantitative, clinical trial type, randomized and controlled, double blind. The sample will be composed by patients with respiratory diseases, aged above 18 years old. The study will consist of two groups: (1) HD-tDCS will be applied - anodic current + respiratory rehabilitation with respiratory muscle training (RMT) and (2) Sham - Only respiratory rehabilitation with RMT without any type of cortical stimulation. The chronic effects of neurostimulation by HD-tDCS associated with cardiopulmonary rehabilitation, with TMR, during 12 sessions will be evaluated. Patients will be evaluated, before and after the protocol, in relation to cortical activation function, pulmonary function, subjective perception of effort, respiratory muscle function, functional capacity, sensation of dyspnea and quality of life. For statistical analysis, intention-to-treat analysis will be used and groups will be compared using Student's t-test, for continuous variables, or chi-square, for categorical variables. ANOVA split-plot, repeated measures for primary outcomes. Analyzes of covariance to identify differences between groups using baseline scores as covariates. Effect sizes and confidence intervals will be calculated using eta squared (η²). Expected results: Neurostimulation would enhance the effects of respiratory rehabilitation and reduce the symptoms of patients with these diseases.
The purpose of this study is to assess the long-term safety and to explore the efficacy of astegolimab in participants with chronic obstructive pulmonary disease (COPD) who have completed the 52-week placebo-controlled treatment period in parent studies GB43311 or GB44332.
This study investigates the efficacy and safety of belimumab compared to placebo, in addition to standard therapy, for the treatment of participants with systemic sclerosis associated interstitial lung disease (SSc-ILD). The study will evaluate the effect of belimumab treatment on lung function as well as on extra-pulmonary disease manifestations, including skin thickening and general symptoms, such as fatigue, that impact quality of life (QoL).
The study will have two separate patient cohorts: Cohort 1 will include patients with newly diagnosed chronic graft versus host disease (GVHD), whereas cohort 2 will include patients with newly diagnosed chronic lung disease (CLD). For cohort 1, the primary objective will be to characterize PRM metrics at the onset of chronic GVHD and determine if a PRM signature is present that will predict 1-year CLD free survival. For cohort 2, the primary objective will focus on characterizing PRM at the onset of CLD and determine if PRM can predict the trajectory in lung function decline in affected patients.
The planned study is a prospective cohort interventional study in IPF and PF-ILD patients after initiating anti-fibrotic therapy and pulmonary rehabilitation. The study aims to investigate if accelerometer measured PA parameters, such as total daily steps, moderate-vigorous PA demonstrate significant and sustained changes longitudinally from baseline in this cohort and can predict disease progression. The study also explores if the actigraphic PA indices correlate with patients' quality of life, change in six-minute walk distance (6MWD), GAP score, fatigue score, change in patients' dyspnea score/scale, radiographic extent of the disease, and pulmonary function test parameters. The study is exploratory in nature. It will provide vital information for clinical as well as research purposes. Clinically, accelerometer measured PA can be utilized for therapeutic target and prognostication, helping to develop patient centric care. The measured indices can also be useful to serve as meaningful endpoints to plan larger and definitive studies in IPF and PF-ILD patients.
The overall aim of the study is to develop and validate a Rheumatoid Arthritis-Interstitial Lung Disease (RA-ILD) clinical prediction model (screening tool) based on risk factors to guide screening for ILD in patients with RA using High Resolution Computed Tomography (HRCT).
Background: The lung is a privileged organ; blood does not reflect most lung processes well, if at all. Therefore, for population scale diagnostics, the investigator team is developing non-invasive portals to the lung, for eventual early detection/risk assessment and diagnostic purposes. However, large macromolecules are not likely suspended nor readily detected in the breath. In particular, genomic DNA in the breath condensate (EBC) is very sparse, and where present, generally highly fragmented, not readily amenable to sequencing based assessments of DNA somatic mutation burden or distribution. Because gDNA (and protein) is challenging to obtain non-invasively from EBC, the study team considered alternative surrogate lower airway specimens. Cough capture is rarely done, and the investigator team is in the process of optimizing its collection. Importantly, the team will be evaluating how much of coughed material is from saliva contamination. Additionally, analyzing material that is target captured by capturing deep lung extracellular vesicles (EVs) using immobilized CCSP/SFTPC antibodies targeting EVs from distal bronchiole Club and alveolar type 2 cells could circumvent the mouth contamination problem, leaving a non-invasive portal to the deep lung suitable for large molecules, and in turn suitable for myriad epidemiologic and clinical applications. Proposal: The investigator team proposes (Aim 1) to pursue optimizing cough collection, and testing the efficacy and practicality of partitioning cough specimen for deep-lung specific extra-cellular vesicles (EVs). This cough specimen will be compared to that from invasively collected deep lung samples BAL/bronchial brushings, and to the potential contaminating mouthrinse, all from the same individuals. (Aim 2) The study team initially proposes to examine these cough specimens for somatic mutations by SMM bulk sequencing for single nucleotide variation, developed in the Vijg/Maslov labs. Finally, the investigator team will (Aim 3) test all airway specimens (cough, mouthwash and BAL) for lung surrogacy of cough, using proteins known to be specific for lung, as opposed to oral cavity/saliva, in the Sidoli/proteomics core. Impact: The investigator team envisions that the translational impact of non-invasively obtained DNA or protein markers could allow for more rapid acute clinical diagnoses, and facilitate precision prevention and/or early detection of many acute and chronic respiratory disorders, including lung cancer, asthma and COPD, acute and chronic infectious diseases, and indeed systemic disorders of inflammation and metabolism.
General Objective: To compare the prognostic value of the FODE scale for COPD exacerbations, where the fat-free mass index (FFMI) will be measured instead of the body mass index (BMI) in the BODE scale. Specific objectives: to describe the nutritional status of COPD patients according by the GesEPOC and GOLD phenotypes; to compare the mortality prognostic value of FODE with BODE; to compare the exacerbations and mortality prognostic value of the BODCAT scale, which includes the CAT questionnaire instead of the six-minute walking test (6MWT), with BODE; to compare the mortality prognostic value of the FODE and FODEx scales, where the BMI and the 6MWT will be substituted by the FFMI and the severe exacerbations in the previous year, respectively, with BODE and BODEx. Methods: prospective, with no intervention besides the recommendations of COPD clinical guidelines, where patients will be allocated into three parallel and open groups according to their forced expiratory flow in the first second (FEV1) in the fashion FEV1 < 30%: FEV1 30-50% : FEV1 > 50%, and will be followed for at least two years. FFMI will be measured using bioelectrical impedance analysis. Exacerbations and mortality will be recorded during follow-up to evaluate the prognostic value of the FODE scale, which hypothetically will increase in 10% the prognostic value of the BODE scale.
ERASE PH-COPD is a randomized double-blind study, with 2 parallel groups. Patients with severe pulmonary hypertension due to chronic obstructive pulmonary disease, will be randomly assigned to receive Tadalafil orally or placebo.