Lung Cancer Clinical Trial
Official title:
Molecular Analysis of the Surnantant of Echoguidated Bronchoscopic Cytopunctions in Lung Cancer
The wide uptake of "liquid biopsy" diagnostics in the care of advanced cancer patients highlights the desire for improved access to tumor allowing accurate tumor genotyping (1). Genotyping of plasma cfDNA is now routine for detection of EGFR driver mutations at diagnosis of NSCLC, or for detection of the EGFR T790M mutation after TKI resistance, and is an emerging approach for the detection of other drivers (HER2 or BRAF mutations, ALK or ROS1 fusions…) (2) or the estimation of tumor mutation burden (TMB) (3). However, the most sensitive plasma genotyping platforms still have a sensitivity of only 70%-80%, such that a negative result requires tissue biopsy confirmation.
The wide uptake of "liquid biopsy" diagnostics in the care of advanced cancer patients highlights the desire for improved access to tumor allowing accurate tumor genotyping (1). Genotyping of plasma cfDNA is now routine for detection of EGFR driver mutations at diagnosis of NSCLC, or for detection of the EGFR T790M mutation after TKI resistance, and is an emerging approach for the detection of other drivers (HER2 or BRAF mutations, ALK or ROS1 fusions…) (2) or the estimation of tumor mutation burden (TMB) (3). However, the most sensitive plasma genotyping platforms still have a sensitivity of only 70%-80%, such that a negative result requires tissue biopsy confirmation. This poses a clinical challenge because negative plasma genotyping is correlated with more limited metastatic spread and lower tumor burden, such that biopsy of these patients may be even more challenging. Because invasive biopsy remains an integral part of the diagnostic strategy, methods are needed for maximizing the yield from these biopsy procedures. There is a current paradox between the need for large amounts of tissue for multiplex analysis of an increasing number of targetable drivers and markers of response to immune therapy (PD-L1, TMB) and the development of minimally invasive biopsy procedures that results in limited specimens. Up to 25% of patients are thus treated without knowledge of the molecular profile of their tumor (4). In particular, 20% of endobronchial ultrasonography transbronchial needle aspiration (EBUS-TBNA) are rejected from genotyping due to lack of tissue (5) after time and tissue consuming diagnostics steps that are sometimes not required (resistance setting). Circulating tumor DNA is an emerging approach for cancer genotyping but sensitivity is limited to 70-80% (6) by inconsistent tumor shed and low DNA concentrations, so that tissue biopsy is still routine. Also, feasibility of TMB assessment on tissue is only 60% (likely much less on EBUS-TBNA specimens) (7) and approximately 80% in plasma (blood TMB, bTMB) (3). The presence of cfDNA in several biological fluids and the feasibility of detecting mutations of interest (usually targeting only EGFR) in these fluids (urine, pleural fluid, CSF) have been clearly demonstrated (8-12), while blood is the most widely studied liquid biopsy substrate in advanced NSCLC. Furthermore, we showed in a proof of concept study, investigating various FNA specimens in a limited numbers of patients that cytology samples' supernatant (usually discarded) is a rich source of DNA. Our results suggest that supernatant free DNA (sfDNA) can be used for baseline and resistance genotyping (13). ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03918538 -
A Series of Study in Testing Efficacy of Pulmonary Rehabilitation Interventions in Lung Cancer Survivors
|
N/A | |
Recruiting |
NCT05078918 -
Comprehensive Care Program for Their Return to Normal Life Among Lung Cancer Survivors
|
N/A | |
Active, not recruiting |
NCT04548830 -
Safety of Lung Cryobiopsy in People With Cancer
|
Phase 2 | |
Completed |
NCT04633850 -
Implementation of Adjuvants in Intercostal Nerve Blockades for Thoracoscopic Surgery in Pulmonary Cancer Patients
|
||
Recruiting |
NCT06037954 -
A Study of Mental Health Care in People With Cancer
|
N/A | |
Recruiting |
NCT06006390 -
CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT05583916 -
Same Day Discharge for Video-Assisted Thoracoscopic Surgery (VATS) Lung Surgery
|
N/A | |
Completed |
NCT00341939 -
Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
|
||
Not yet recruiting |
NCT06376253 -
A Phase I Study of [177Lu]Lu-EVS459 in Patients With Ovarian and Lung Cancers
|
Phase 1 | |
Recruiting |
NCT05898594 -
Lung Cancer Screening in High-risk Black Women
|
N/A | |
Active, not recruiting |
NCT05060432 -
Study of EOS-448 With Standard of Care and/or Investigational Therapies in Participants With Advanced Solid Tumors
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT03575793 -
A Phase I/II Study of Nivolumab, Ipilimumab and Plinabulin in Patients With Recurrent Small Cell Lung Cancer
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT03667716 -
COM701 (an Inhibitor of PVRIG) in Subjects With Advanced Solid Tumors.
|
Phase 1 | |
Terminated |
NCT01624090 -
Mithramycin for Lung, Esophagus, and Other Chest Cancers
|
Phase 2 | |
Terminated |
NCT03275688 -
NanoSpectrometer Biomarker Discovery and Confirmation Study
|
||
Not yet recruiting |
NCT04931420 -
Study Comparing Standard of Care Chemotherapy With/ Without Sequential Cytoreductive Surgery for Patients With Metastatic Foregut Cancer and Undetectable Circulating Tumor-Deoxyribose Nucleic Acid Levels
|
Phase 2 | |
Recruiting |
NCT06052449 -
Assessing Social Determinants of Health to Increase Cancer Screening
|
N/A | |
Recruiting |
NCT06010862 -
Clinical Study of CEA-targeted CAR-T Therapy for CEA-positive Advanced/Metastatic Malignant Solid Tumors
|
Phase 1 | |
Not yet recruiting |
NCT06017271 -
Predictive Value of Epicardial Adipose Tissue for Pulmonary Embolism and Death in Patients With Lung Cancer
|
||
Recruiting |
NCT05787522 -
Efficacy and Safety of AI-assisted Radiotherapy Contouring Software for Thoracic Organs at Risk
|