Clinical Trials Logo

Clinical Trial Summary

Pulmonary vascular anatomy represents a constant challenge during lung resection, because of its variability in terms of vascular branches and anatomical variations. Preoperative standard computed tomography is not always sufficient to foresee tricky abnormalities; augmented reality, thanks to holograms creation, may offer additional data on pulmonary vascular anatomy and its relation with neoplastic tissue. The aim of this study is to assess the possibility of correctly predict number, location and potential anomalies of pulmonary vascular anatomy of the lobe to be resected in patients undergoing lung resection for cancer. Patients will receive standard preoperative oncologic and functional assessment. Preoperative computed tomography (CT) - performed according to a specific protocol - will be performed. CT images will be subsequently elaborated to generate 3D images (holograms). Two radiologists and two thoracic surgeons will analyze CT images and report number of artery and vein branches for the lobe to be resected. Moreover they will report every anatomical variation, according to the normal anatomy. After that, the same two radiologists and thoracic surgeons will analyze the holograms and perform the same analysis as quoted above. Patients will undergo to the planned surgical resection. The operating team will report the exact number of artery and vein branches of the resected lobe as well as every anatomical variation. Preoperative CT and holographic findings of the radiologists and the thoracic surgeons will be matched with the report of the operating team.


Clinical Trial Description

An augmented reality (AR) system provides the surgeon with computer processed imaging data in real-time via dedicated hardware and software. The projection of AR is made possible by using displays, projectors, cameras, trackers, or other specialized equipment. At present, the applications of AR are limited by the essential requisite of preoperative 3D reconstructions of medical images. It is possible to create these reconstructions by using commercial or self-made software from the Digital Imaging and Communications in Medicine (DICOM) format . The quality of a reconstruction depends on the quality of input data and the accuracy of the reconstruction system. Such reconstructions can be used for virtual exploration of target areas, planning an elective surgical approach in advance, and for better orientation and navigation in the operative field. AR is especially useful in visualizing critical structures such as major vessels, nerves, or other vital tissues. By projecting these structures directly onto the patient, AR increases safety and reduces the time required to complete the procedure. Moreover Augmented reality proved to be an effective tool for training and skill assessment of surgery residents, other medical staff, or students. Augmented reality can be used effectively for preoperative planning and completion of the actual surgery in timely fashion. The preoperative 3D reconstructed images can be modified and prepared for display in AR systems. Commonly, AR is used for tailoring individually preferred incisions and cutting planes, optimal placement of trocars, or to generally improve safety by displaying positions of major organ components. Another benefit of AR is the ability to aid surgeons in difficult terrain after a neoadjuvant chemotherapy or radiotherapy. Studies suggest that AR systems are becoming comparable to traditional navigation techniques, with precision and safety sufficient for routine clinical practice. Most problems faced presently will be solved by further medical and technological research. Augmented reality appears to be a powerful tool possibly capable of changing the field of surgery through a rational use. In the future, AR will likely serve as an advanced human-computer interface, working in symbiosis with surgeons, allowing them to achieve even better results. Nevertheless, further advancement is much needed to achieve maximum potential and cost-effectiveness of augmented reality. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04227444
Study type Observational
Source European Institute of Oncology
Contact Francesco Petrella, MD, PhD
Phone 00390294372921
Email francesco.petrella@ieo.it
Status Recruiting
Phase
Start date March 1, 2020
Completion date March 1, 2024

See also
  Status Clinical Trial Phase
Completed NCT03918538 - A Series of Study in Testing Efficacy of Pulmonary Rehabilitation Interventions in Lung Cancer Survivors N/A
Recruiting NCT05078918 - Comprehensive Care Program for Their Return to Normal Life Among Lung Cancer Survivors N/A
Active, not recruiting NCT04548830 - Safety of Lung Cryobiopsy in People With Cancer Phase 2
Completed NCT04633850 - Implementation of Adjuvants in Intercostal Nerve Blockades for Thoracoscopic Surgery in Pulmonary Cancer Patients
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT06006390 - CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT05583916 - Same Day Discharge for Video-Assisted Thoracoscopic Surgery (VATS) Lung Surgery N/A
Completed NCT00341939 - Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
Not yet recruiting NCT06376253 - A Phase I Study of [177Lu]Lu-EVS459 in Patients With Ovarian and Lung Cancers Phase 1
Recruiting NCT05898594 - Lung Cancer Screening in High-risk Black Women N/A
Active, not recruiting NCT05060432 - Study of EOS-448 With Standard of Care and/or Investigational Therapies in Participants With Advanced Solid Tumors Phase 1/Phase 2
Active, not recruiting NCT03575793 - A Phase I/II Study of Nivolumab, Ipilimumab and Plinabulin in Patients With Recurrent Small Cell Lung Cancer Phase 1/Phase 2
Active, not recruiting NCT03667716 - COM701 (an Inhibitor of PVRIG) in Subjects With Advanced Solid Tumors. Phase 1
Terminated NCT01624090 - Mithramycin for Lung, Esophagus, and Other Chest Cancers Phase 2
Terminated NCT03275688 - NanoSpectrometer Biomarker Discovery and Confirmation Study
Not yet recruiting NCT04931420 - Study Comparing Standard of Care Chemotherapy With/ Without Sequential Cytoreductive Surgery for Patients With Metastatic Foregut Cancer and Undetectable Circulating Tumor-Deoxyribose Nucleic Acid Levels Phase 2
Recruiting NCT06010862 - Clinical Study of CEA-targeted CAR-T Therapy for CEA-positive Advanced/Metastatic Malignant Solid Tumors Phase 1
Recruiting NCT06052449 - Assessing Social Determinants of Health to Increase Cancer Screening N/A
Not yet recruiting NCT06017271 - Predictive Value of Epicardial Adipose Tissue for Pulmonary Embolism and Death in Patients With Lung Cancer
Recruiting NCT05787522 - Efficacy and Safety of AI-assisted Radiotherapy Contouring Software for Thoracic Organs at Risk