Clinical Trials Logo

Clinical Trial Summary

Lung cancer is commonly characterised either with a surgical procedure or by taking a tissue sample with a needle. Unfortunately, these invasive approaches may be unsafe in many patients with lung cancer, who often have co-existing illnesses such as emphysema.

Magnetic resonance spectroscopy (MRS) is a type of scan which offers the possibility of assessing tumour function by measuring concentrations of chemicals (metabolites) within the abnormal tissue. It is a well-established technique in imaging brain cancers. It has also been more recently studied in assessing prostate, liver and heart. There has been very little exploration of the potential role of MRS in lung cancer.

The proposed feasibility study will recruit 15 patients with proven lung cancer to undergo an MRS scan. The reliability of the technique for metabolite measurement will be determined by comparing repeated scans from the same region in the same tumour. Further scans from different regions in the same tumour, normal lung around the tumour and tumour regions in different patients will be used to look for any patterns in the cancer metabolites which may indicate avenues for potential future research.


Clinical Trial Description

Magnetic resonance spectroscopy (MRS) is a magnetic resonance imaging (MRI) application that we aim to utilise in lung cancer for the first time at a higher magnetic field strength (3 Tesla). MRS allows nuclear magnetic resonance spectra to be obtained from user-defined regions of interest (ROIs) within body tissues. These spectra can be used to quantify concentrations of tumour metabolites, providing unique biological information non-invasively and without the need for ionising radiation or intravenous contrast material. Proton MRS is a well-established technique for characterisation of brain pathology and prostate cancer. MRS in the lung is more challenging as it is a moving structure but has been shown to be feasible in a previous small study using more basic standard field strength equipment and technique. MRS of other moving structures, namely the heart and liver, has been shown to be achievable.

It is believed that MRS, using a higher field strength (3 Tesla) machine, has not been applied before in the evaluation of lung cancer in human subjects. Successful utilisation of this technology to quantify metabolite concentrations within lung cancers offers new opportunities for non-invasive tumour classification. For example, low tumour oxygen levels, a known prognostic indicator, may be identifiable by non-invasive measurement of lactate concentration by MRS. Since MRS is an easily repeatable technique without ionising radiation, it may also prove useful in response assessment following lung cancer therapies. This is a prospective feasibility study, aiming to recruit 15 consecutive patients with lung cancer to undergo proton MRS. The feasibility and repeatability of the technique will be assessed by analysis of the MR spectra obtained.

The principal research questions is: Can MRS scans be obtained in lung cancer with a high field strength (3 Tesla) MR scanner? The secondary research questions are: Is there any indication of reproducibility in the MRS signals obtained? Is there any indication of MRS patterns correlating with tumour type and other clinical parameters which might be a useful subject for further investigation in lung cancer characterisation?

Summary of interventions:

1. During attendance at respiratory clinic, invite patient to participate in study and issue Patient Information Sheet (PIS), highlighting contact details for next steps (typically 5 min)

2. Patients with questions may contact a study investigator using the telephone number in the PIS to have them answered (typically 5-15 min)

3. Patients wishing to proceed contact the RIF using the telephone number in the PIS to arrange a convenient scan appointment and taxi transfers (typically 5 min) At least 1 day after clinic attendance

4. Written informed consent obtained, pre-scan checklist completed and GP letter sent by medical member of study team. Research radiographer completes safety checklist with patient. Scan undertaken, with maximum 'on table' scan time of 1 hour.

Implications for research for future service developments:

If this early study shows MRS of lung cancer to be technically feasible, the investigators will apply for external funding for a larger prospective study or studies correlating the MRS findings with a panel of clinical, imaging, histopathological and molecular variables. These secondary studies would have potential to alter clinical practice in tumour characterisation and follow-up. The overall aim of the research would be the development of a non-invasive tool to enable diagnosis and characterisation of suspected lung cancers. ;


Study Design

Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Diagnostic


Related Conditions & MeSH terms


NCT number NCT02497586
Study type Interventional
Source NHS Greater Glasgow and Clyde
Contact David B Stobo, Dr
Phone 0141 452 3635
Email david.stobo2@ggc.scot.nhs.uk
Status Not yet recruiting
Phase N/A
Start date August 2015
Completion date July 2016

See also
  Status Clinical Trial Phase
Completed NCT03918538 - A Series of Study in Testing Efficacy of Pulmonary Rehabilitation Interventions in Lung Cancer Survivors N/A
Recruiting NCT05078918 - Comprehensive Care Program for Their Return to Normal Life Among Lung Cancer Survivors N/A
Active, not recruiting NCT04548830 - Safety of Lung Cryobiopsy in People With Cancer Phase 2
Completed NCT04633850 - Implementation of Adjuvants in Intercostal Nerve Blockades for Thoracoscopic Surgery in Pulmonary Cancer Patients
Recruiting NCT06006390 - CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT05583916 - Same Day Discharge for Video-Assisted Thoracoscopic Surgery (VATS) Lung Surgery N/A
Completed NCT00341939 - Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
Not yet recruiting NCT06376253 - A Phase I Study of [177Lu]Lu-EVS459 in Patients With Ovarian and Lung Cancers Phase 1
Recruiting NCT05898594 - Lung Cancer Screening in High-risk Black Women N/A
Active, not recruiting NCT05060432 - Study of EOS-448 With Standard of Care and/or Investigational Therapies in Participants With Advanced Solid Tumors Phase 1/Phase 2
Active, not recruiting NCT03667716 - COM701 (an Inhibitor of PVRIG) in Subjects With Advanced Solid Tumors. Phase 1
Active, not recruiting NCT03575793 - A Phase I/II Study of Nivolumab, Ipilimumab and Plinabulin in Patients With Recurrent Small Cell Lung Cancer Phase 1/Phase 2
Terminated NCT01624090 - Mithramycin for Lung, Esophagus, and Other Chest Cancers Phase 2
Terminated NCT03275688 - NanoSpectrometer Biomarker Discovery and Confirmation Study
Not yet recruiting NCT04931420 - Study Comparing Standard of Care Chemotherapy With/ Without Sequential Cytoreductive Surgery for Patients With Metastatic Foregut Cancer and Undetectable Circulating Tumor-Deoxyribose Nucleic Acid Levels Phase 2
Recruiting NCT06010862 - Clinical Study of CEA-targeted CAR-T Therapy for CEA-positive Advanced/Metastatic Malignant Solid Tumors Phase 1
Recruiting NCT06052449 - Assessing Social Determinants of Health to Increase Cancer Screening N/A
Not yet recruiting NCT06017271 - Predictive Value of Epicardial Adipose Tissue for Pulmonary Embolism and Death in Patients With Lung Cancer
Recruiting NCT05787522 - Efficacy and Safety of AI-assisted Radiotherapy Contouring Software for Thoracic Organs at Risk