View clinical trials related to Leukemia.
Filter by:A prospective observational study of pediatric and young adult acute lymphoblastic leukaemia (ALL) patients treated with CD19 chimeric antigen receptor T-cells (CAR-T cells). The study will examine changes in CAR-T persistence over time and causal factors.
The purpose of this prospective, open-label, single-center study is to evaluate the efficacy and safety of VEN-AZA (venetoclax and azacytidine) followed by modified BUCY (busulfan and cyclophosphamide) as conditioning regimen for high-risk or relapsed/refractory acute lymphoblastic leukemia (ALL) undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT).
This trial aims to find the MTD of Venetoclax when added to Fludarabin, Amsacrine and Ara-C + Treosulfan and to evaluate whether the addition of Venetoclax to sequential conditioning with FLAMSA + Treosulfan is safe for allogeneic blood stem cell transplantation in patients with high-risk MDS, CMML or sAML (FLAMSAClax)
This study aims to assess the therapeutic efficacy and safety of venetoclax in combination with azacitidine and CAG as induction regimen in Patients with Refreactory/Relapse Acute Myeloid Leukemia.
This is a Phase II study following subjects proceeding with our Institutional non-myeloablative cyclophosphamide/ fludarabine/total body irradiation (TBI) preparative regimen followed by a related, unrelated, or partially matched family donor stem cell infusion using post-transplant cyclophosphamide (PTCy), sirolimus and MMF GVHD prophylaxis.
This study aims to evaluate the efficacy and safety of venetoclax combined with homoharringtonine and cytarabine in the treatment of newly diagnosed acute myeloid leukemia.
This is an observational retrospective and prospective multicenter study aimed at describing the role of the COVID -19 prophylaxis with Tixagevimab and Cilgavimab in CLL or indolent B-NHL patients who received first COVID-19 prophylaxis dose between March 2022 and October 2022.
This study will assess the safety, efficacy, and feasibility of ⍺/β CD3+ T-cell and CD19+ B-cell depletion in allogeneic stem cell transplantation in patients with acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML), juvenile myelomonocytic leukemia (JMML), high risk myelodysplastic syndrome (MDS), chronic myeloid leukemia (CML) and lymphoma. Subjects will receive an allogeneic stem cell transplant that has been depleted of ⍺/β CD3+ T-cells and CD19+ B-cells using the Miltenyi CliniMACS Prodigy® system.
This phase II trial tests how well decitabine and cedazuridine (DEC-C) works in combination with venetoclax in treating acute myeloid leukemia (AML) in patients whose AML has come back after a period of improvement (relapse) after a donor stem cell transplant. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving DEC-C in combination with venetoclax may kill more cancer cells in patients with relapsed AML.
Background: About 23,000 people die from B-cell cancers in the US each year. These cancers, often called leukemia or lymphoma, affect a type of white blood cell called B cells. These cancers are difficult to treat, and the therapies used can have bad side effects. Researchers want to try a new type of treatment. This new treatment uses a patient s own immune cells (T cells) that are modified to carry genes (chimeric antigen receptor, or CAR T cells) to kill cancer cells. Objective: To test a treatment using CAR T cells in people with B-cell cancers. Eligibility: People aged 18 to 75 years with a B-cell cancer that has not been controlled with standard therapies. Design: Participants will be screened. They will have: Blood and urine tests. A needle will be inserted to draw a sample of tissue from inside the hip bone. For some patients, a needle will be inserted into their lower back to get a sample of the fluid around their spinal cord. A tumor biopsy might be needed. Imaging scans. Tests of their heart function. Participants will undergo apheresis: Blood will be drawn from a needle in an arm. The blood will pass through a machine that separates out the T cells. The remaining blood will be returned to the body through a second needle. Participants will receive 2 chemotherapy drugs once a day for 3 days. Participants will be admitted to the hospital for at least 9 days. Their T cells, now modified, will be infused back into their bloodstream through a tube placed in a large vein. Follow-up visits will continue for 5 years, but patients will need to stay in touch with the CAR treatment team for 15 year.