Clinical Trials Logo

Leukemia, Myelomonocytic, Acute clinical trials

View clinical trials related to Leukemia, Myelomonocytic, Acute.

Filter by:

NCT ID: NCT01048034 Completed - Clinical trials for Myelodysplastic Syndrome

Evaluation of Azacitidine in Transfusion Dependent Patients With Low-risk Myelodysplastic Syndrome (MDS) or Chronic Myelomonocytic Leukemia (CMML)

Start date: January 2010
Phase: Phase 2
Study type: Interventional

Azacitidine has proved prolonged overall survival in patients with high-risk MDS. Minor pilot studies have shown that treatment with Azacitidine can induce transfusion independency in previous transfusion dependent patients with low-risk MDS. This study will evaluate the effect of Azacitidine in transfusion dependent patients with low-risk MDS (IPSS low or int-1) or low risk CMML. Included patients should first have failed, or considered not being eligible to, treatment with EPO +/- G-CSF. Our hypothesis is that Azacitidine can lead to transfusion independency in this group of patients. Those patients who do not respond to treatment with Azacitidine alone, will be given treatment with the combination of Azacitidine and EPO where our hypothesis is that Azacitidine can restore sensitivity to EPO.

NCT ID: NCT01031368 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Clofarabine, Cytarabine, and Filgrastim Followed by Infusion of Non-HLA Matched Ex Vivo Expanded Cord Blood Progenitors in Treating Patients With Acute Myeloid Leukemia

Start date: December 2009
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the safety and potential efficacy of infusing non-human leukocyte antigen (HLA) matched ex vivo expanded cord blood progenitors following treatment with clofarabine and cytarabine for patients with acute myeloid leukemia (AML). The combination of clofarabine, cytarabine (Ara-C) and granulocyte colony-stimulating factor (G-CSF) has been tested in earlier studies for the treatment of acute myeloid leukemia. In these previous clinical trials, this combination of drugs has been shown to have an anti-leukemia effect. However, the combination of clofarabine and Ara-C is profoundly myelosuppressive and immunosuppressive causing periods of neutropenia potentially lasting more than three weeks. During this period, patients are at increased risk of infections that can result in an increased risk of death. G-CSF is a growth factor that is used to help the white blood cells recover more quickly, but even with G-CSF, the use of clofarabine and Ara-C is often limited by the need to take long breaks between treatments to allow blood counts to recover. In our lab we have developed a method of growing or "expanding" blood stem cells (cells that give rise to the blood system) from umbilical cord blood. We are doing this study to find out if giving these expanded cells after chemotherapy is safe, helps the blood system recover more quickly from chemotherapy to allow shorter breaks between treatments, and decreases the risk of infection

NCT ID: NCT01020539 Completed - Clinical trials for Myelodysplastic Syndrome

Allogeneic Stem Cell Transplantation Followed By Targeted Immune Therapy In Average Risk Leukemia

AML/MDS/JMML
Start date: September 11, 2002
Phase: Phase 1
Study type: Interventional

Allogeneic stem cell transplantation (AlloSCT) followed by targeted immune therapy Gemtuzumab Ozogamicin patients with acute myeloid leukemia (AML)/juvenile myelomonocytic leukemia (JMML)/myelodysplastic syndromes (MDS) will be safe and well tolerated.

NCT ID: NCT00946647 Completed - Clinical trials for Acute Myeloid Leukemia

A Phase Ib/IIb, Open-label, Multi-center, Study of Oral Panobinostat Administered With 5-Azacitidine (in Adult Patients With Myelodysplastic Syndromes (MDS), Chronic Myelomonocytic Leukemia (CMML), or Acute Myeloid Leukemia (AML).

Start date: December 2, 2009
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this randomized, two-arm, open-label expansion phase study was to collect preliminary efficacy data of panobinostat at the recommended phase II dose (RPIID) level in combination with azacytidine (5-Aza) versus an active control arm 5-Aza alone. This randomized phase II part also allowed collecting safety data of panobinostat in combination with 5-Aza in comparison to single-agent 5-aza.

NCT ID: NCT00895934 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Vorinostat, Azacitidine, and Gemtuzumab Ozogamicin for Older Patients With Relapsed or Refractory AML

Start date: May 2009
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this study is to test the safety of vorinostat (Zolinza) and azacitidine (Vidaza) when combined with gemtuzumab ozogamicin (GO) at different dose levels. These drugs increase the effect of GO against leukemia cells in the test tube, but we don't know yet whether they also increase the anti-leukemia effect of GO in people.

NCT ID: NCT00890747 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

Sunitinib Malate in Treating HIV-Positive Patients With Cancer Receiving Antiretroviral Therapy

Start date: August 2009
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and the best dose of sunitinib malate in treating human immunodeficiency virus (HIV)-positive patients with cancer receiving antiretroviral therapy. Sunitinib malate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.

NCT ID: NCT00856388 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Fludarabine Phosphate, Melphalan, Total-Body Irradiation, Donor Stem Cell Transplant in Treating Patients With Hematologic Cancer or Bone Marrow Failure Disorders

Start date: January 14, 2009
Phase: N/A
Study type: Interventional

This clinical trial is studying how well giving fludarabine phosphate and melphalan together with total-body irradiation followed by donor stem cell transplant works in treating patients with hematologic cancer or bone marrow failure disorders. Giving low doses of chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect)

NCT ID: NCT00799461 Completed - Depression Clinical Trials

Internet-Based Program With or Without Telephone-Based Problem-Solving Training in Helping Long-Term Survivors of Hematopoietic Stem Cell Transplant Cope With Late Complications

Start date: August 2008
Phase: Phase 3
Study type: Interventional

RATIONALE: A personalized Internet-based program may help improve fatigue, depression, and quality of life in long-term survivors of stem cell transplant. It is not yet known whether an Internet-based program is more effective with or without telephone-based problem-solving training. PURPOSE: This randomized clinical trial is studying how well an Internet-based program works with or without telephone-based problem-solving training in helping long-term survivors of hematopoietic stem cell transplant cope with late complications

NCT ID: NCT00795769 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Ondansetron in Preventing Nausea and Vomiting in Patients Undergoing Stem Cell Transplant

Start date: August 2008
Phase: Phase 2
Study type: Interventional

RATIONALE: Ondansetron may help lessen or prevent nausea and vomiting in patients undergoing stem cell transplant. PURPOSE: This phase II trial is studying how well ondansetron works in preventing nausea and vomiting in patients undergoing stem cell transplant.

NCT ID: NCT00795002 Completed - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

Start date: November 2008
Phase: Phase 2
Study type: Interventional

This randomized phase II trial is studying two different schedules of alvocidib to compare how well they work when given together with cytarabine and mitoxantrone in treating patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as alvocidib, cytarabine, and mitoxantrone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet known which schedule of alvocidib is more effective when given together with cytarabine and mitoxantrone in treating patients with acute myeloid leukemia.