Clinical Trials Logo

Leukemia, Myelomonocytic, Acute clinical trials

View clinical trials related to Leukemia, Myelomonocytic, Acute.

Filter by:
  • Active, not recruiting  
  • Page 1 ·  Next »

NCT ID: NCT04668885 Active, not recruiting - Clinical trials for Myelodysplastic Syndromes

CPX-351 as a Novel Approach for the Treatment of Older Patients With AML and MDS

Start date: January 14, 2021
Phase: Phase 2
Study type: Interventional

The purpose of this study is to evaluate how effective lower doses of CPX-351 are in older participants with relapsed/refractory acute myeloid leukemia (AML) who are not eligible to receive intensive chemotherapy and in participants with myelodysplastic syndromes (MDS) after Hypomethylating Agents (HMA) failure.

NCT ID: NCT04140487 Active, not recruiting - Clinical trials for Refractory Acute Myeloid Leukemia

Azacitidine, Venetoclax, and Gilteritinib in Treating Patients With Recurrent/Refractory FLT3-Mutated Acute Myeloid Leukemia, Chronic Myelomonocytic Leukemia, or High-Risk Myelodysplastic Syndrome/Myeloproliferative Neoplasm

Start date: December 17, 2019
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of gilteritinib and to see how well it works in combination with azacitidine and venetoclax in treating patients with FLT3-mutation positive acute myeloid leukemia, chronic myelomonocytic leukemia, or high-risk myelodysplastic syndrome/myeloproliferative neoplasm that has come back (recurrent) or has not responded to treatment (refractory). Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Gilteritinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine, venetoclax, and gilteritinib may work better compared to azacitidine and venetoclax alone in treating patients with acute myeloid leukemia, chronic myelomonocytic leukemia, or myelodysplastic syndrome/myeloproliferative neoplasm.

NCT ID: NCT03722407 Active, not recruiting - Leukemia Clinical Trials

Ruxolitinib for the Treatment of Chronic Myelomonocytic Leukemia (CMML): A Phase 2 Expansion

Start date: August 28, 2019
Phase: Phase 2
Study type: Interventional

This study is to find out if treating Chronic Myelomonocytic Leukemia (CMML) with a study drug (ruxolitinib) can improve outcomes of patients with CMML.

NCT ID: NCT03404193 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Venetoclax and Decitabine in Treating Participants With Relapsed/Refractory Acute Myeloid Leukemia or Relapsed High-Risk Myelodysplastic Syndrome

Start date: January 18, 2018
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well venetoclax and decitabine work in treating participants with acute myeloid leukemia that has come back or does not respond to treatment, or with high-risk myelodysplastic syndrome that has come back. Drugs used in chemotherapy, such as venetoclax and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

NCT ID: NCT03289910 Active, not recruiting - Clinical trials for Acute Myeloid Leukemia

Topotecan Hydrochloride and Carboplatin With or Without Veliparib in Treating Advanced Myeloproliferative Disorders and Acute Myeloid Leukemia or Chronic Myelomonocytic Leukemia

Start date: September 24, 2018
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well topotecan hydrochloride and carboplatin with or without veliparib work in treating patients with myeloproliferative disorders that have spread to other places in the body and usually cannot be cured or controlled with treatment (advanced), and acute myeloid leukemia or chronic myelomonocytic leukemia. Drugs used in chemotherapy, such as topotecan hydrochloride and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving topotecan hydrochloride, carboplatin, and veliparib may work better in treating patients with myeloproliferative disorders and acute myeloid leukemia or chronic myelomonocytic leukemia compared to topotecan hydrochloride and carboplatin alone.

NCT ID: NCT03190915 Active, not recruiting - Clinical trials for Neurofibromatosis Type 1

Trametinib in Treating Patients With Relapsed or Refractory Juvenile Myelomonocytic Leukemia

Start date: September 9, 2018
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well trametinib works in treating patients with juvenile myelomonocytic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT02935361 Active, not recruiting - Clinical trials for Myelodysplastic Syndrome

Guadecitabine and Atezolizumab in Treating Patients With Advanced Myelodysplastic Syndrome or Chronic Myelomonocytic Leukemia That Is Refractory or Relapsed

Start date: November 2, 2016
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial studies the side effects and best dose of guadecitabine when given together with atezolizumab and to see how well they work in treating patients with myelodysplastic syndrome or chronic myelomonocytic leukemia that has spread to other places in the body and has come back or does not respond to treatment. Guadecitabine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as atezolizumab, may interfere with the ability of cancer cells to grow and spread. Giving guadecitabine and atezolizumab may work better in treating patients with myelodysplastic syndrome or chronic myelomonocytic leukemia.

NCT ID: NCT02530034 Active, not recruiting - Myelofibrosis Clinical Trials

Hu8F4 in Treating Patients With Advanced Hematologic Malignancies

Start date: January 31, 2019
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of anti-PR1/HLA-A2 monoclonal antibody Hu8F4 (Hu8F4) in treating patients with malignancies related to the blood (hematologic). Monoclonal antibodies, such as Hu8F4, may interfere with the ability of cancer cells to grow and spread.

NCT ID: NCT02085408 Active, not recruiting - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

Start date: February 4, 2011
Phase: Phase 3
Study type: Interventional

This randomized phase III trial studies clofarabine to see how well it works compared with daunorubicin hydrochloride and cytarabine when followed by decitabine or observation in treating older patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as clofarabine, daunorubicin hydrochloride, cytarabine, and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which chemotherapy regimen is more effective in treating acute myeloid leukemia.

NCT ID: NCT02071901 Active, not recruiting - Clinical trials for Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities

Eltrombopag Olamine in Improving Platelet Recovery in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

Start date: August 14, 2014
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well eltrombopag olamine works in improving the recovery of platelet counts in older patients with Acute Myeloid Leukemia (AML) undergoing induction (the first treatment given for a disease) chemotherapy. Platelet counts recover more slowly in older patients, leading to risk of complications and the delay of post-remission therapy. Eltrombopag olamine may cause the body to make platelets after chemotherapy.