Clinical Trials Logo

Leukemia, Lymphoid clinical trials

View clinical trials related to Leukemia, Lymphoid.

Filter by:

NCT ID: NCT06308588 Not yet recruiting - Clinical trials for Acute Lymphoblastic Leukemia

Phase II Study of the Combination of Blinatumomab and Asciminib in Patients With Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia

Start date: September 30, 2024
Phase: Phase 2
Study type: Interventional

To learn if the combination of blinatumomab and asciminib can help to control Ph+ ALL.

NCT ID: NCT06307600 Not yet recruiting - Clinical trials for B Lymphoblastic Leukemia/Lymphoma

The Safety and Efficacy of RD06-03 CART Cell Injection in Patients With R/R Acute B-lymphoblastic Leukemia

Start date: March 15, 2024
Phase: Early Phase 1
Study type: Interventional

This study is designed to explore the safety and efficacy for patients with relapsed and/or refractory B-cell lymphoblastic leukemia.

NCT ID: NCT06291428 Not yet recruiting - Clinical trials for Acute Lymphoblastic Leukemia

Raman Spectroscopy Compared to Flow Cytometry

Start date: October 15, 2024
Phase:
Study type: Observational

The detection of MRD is associated with an increased risk of relapse and adverse prognosis in all patient groups diagnosed with acute lymphoblastic leukemia (ALL). However, it has a sensitivity level that detects one leukemic cell in 10,000 normal cells, along with other disadvantages such as the need for a panel of fluorescent antibodies for MRD detection, and its measurement is not standardized in many centers. New determination techniques may be necessary for MRD evaluation. Raman spectroscopy is proposed as a potential technique for MRD measurement, which is based on the inelastic scattering of light that occurs when it interacts with matter, causing optical scattering, where a portion of the radiation changes its wavelength (by Raman effect). Objectives: MAIN OBJECTIVE: To evaluate the presence of MRD in patients with ALL by comparing a standard evaluation method using flow cytometry with a new proposed method using Raman spectroscopy. SPECIFIC OBJECTIVES: - To assess the presence of MRD using flow cytometry in patients with ALL. - To assess the presence of MRD using Raman spectroscopy in patients with ALL. - To perform a comparison between the MRD measurement techniques by determining sensitivity, specificity, positive predictive value, and negative predictive value. - To establish the validation of using Raman spectroscopy as a method for MRD evaluation. Study Design: An observational, cross-sectional, comparative, and diagnostic test study will be conducted on bone marrow aspirate samples from adult and pediatric ALL patients to evaluate the presence of MRD using Raman spectroscopy, comparing the results of this technique with those obtained using flow cytometry. As a diagnostic test study, sensitivity, specificity, positive predictive value, and negative predictive value will be evaluated. The study will be conducted on adult and pediatric patients diagnosed with acute lymphoblastic leukemia treated at the hemato-oncology department of the UMAE No. 1 National Medical Center Bajio and the UMAE Hospital Gynecology-Pediatrics No. 48. Inclusion Criteria: Patients diagnosed with ALL for whom MRD determination is clinically necessary will be included in the study. Their results will be evaluated using the gold standard, flow cytometry, and compared with results obtained through Raman spectroscopy.

NCT ID: NCT06291220 Not yet recruiting - Clinical trials for Chronic Lymphocytic Leukemia

A Study Assessing Adverse Event and How Oral ABBV-453 Moves Through the Body in Adult Participants With Relapsed or Refractory (R/R) Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma (SLL)

Start date: June 2, 2024
Phase: Phase 1
Study type: Interventional

Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries. The purpose of this study is to assess how well ABBV-453 works adult participants with relapsed/refractory (R/R) untreated CLL/small lymphocytic lymphoma (SLL). Adverse events, pharmacokinetics, and change in disease activity will be assessed. ABBV-453 is an investigational drug for the treatment of CLL and SLL. There are 2 parts to this study. In part A participants will be placed 1 of 5 cohorts with a specific target dose for each cohort and receive obinutuzumab during the debulking period followed escalating doses of ABBV-453, until the appropriate target dose is achieved. In part B participants will be placed in 2 cohorts and receive up to the maximum dose in part A, with cohort 2.1 including a debulking period (obinutuzumab) as in part A. Approximately 80 adult participants with previously R/R CLL/SLL will be enrolled in the study in approximately 28 sites across the world. Participants in part A will placed into 1 of 5 cohorts with a specific target dose for each cohort and will receive intravenous (IV) obinutuzumab as part of the debulking period, followed by escalating doses of oral ABBV-453 until the appropriate target dose is achieved. Participants in part B will be place in one of 2 cohorts. Participants in cohort 2.1 will receive IV obinutuzumab as part of the debulking period, followed by escalating doses of oral ABBV-453 until the maximum target dose from part A is achieved. Participants in cohort 2.2 will receive no treatment during the the debulking period, followed by escalating doses of oral ABBV-453 until the maximum target dose from part A is achieved. The estimated study duration is 5 years. There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, and checking for side effects.

NCT ID: NCT06289673 Not yet recruiting - Clinical trials for Acute Lymphoblastic Leukemia

Identification of Necessary Information for Treatment Induction in Newly Diagnosed Acute Lymphoblastic Leukemia/Lymphoma

Start date: July 2024
Phase: Phase 4
Study type: Interventional

The goal of this study is to provide sufficient therapy during the time a patients' B-cell Acute Lymphoblastic Leukemia (ALL) or Lymphoblastic Leukemia (LLy) risk category is being determined. The term "risk" refers to the chance of the ALL or LLy coming back after treatment. Primary Objectives - To provide sufficient therapy to enable testing of newly diagnosed acute lymphoblastic leukemia/lymphoma and mixed phenotype acute leukemia/lymphoma tumor samples to determine eligibility and appropriate risk stratification for SJALL therapeutic studies. - To develop a central database of genomic and clinical findings. Secondary Objectives - To assess event free and overall survival data of patients enrolled on this study.

NCT ID: NCT06287944 Not yet recruiting - Clinical trials for Acute Myeloid Leukemia

225Ac-DOTA-Anti-CD38 Daratumumab Monoclonal Antibody With Fludarabine, Melphalan and Total Marrow and Lymphoid Irradiation as Conditioning Treatment for Donor Stem Cell Transplant in Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia and Myelodysplastic Syndrome

Start date: June 18, 2024
Phase: Phase 1
Study type: Interventional

This phase I trial tests the safety, side effects, best dose, and effectiveness of 225Ac-DOTA-Anti-CD38 daratumumab monoclonal antibody in combination with fludarabine, melphalan and total marrow and lymphoid irradiation (TMLI) as conditioning treatment for donor stem cell transplant in patients with high-risk acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS). Daratumumab is in a class of medications called monoclonal antibodies. It binds to a protein called CD38, which is found on some types of immune cells and cancer cells. Daratumumab may block CD38 and help the immune system kill cancer cells. Radioimmunotherapy is treatment with a radioactive substance that is linked to a monoclonal antibody, such as daratumumab, that will find and attach to cancer cells. Radiation given off by the radioisotope my help kill the cancer cells. Chemotherapy drugs, such as fludarabine and melphalan, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. TMLI is a targeted form of body radiation that targets marrow, lymph node chains, and the spleen. It is designed to reduce radiation-associated side effects and maximize therapy effect. Actinium Ac 225-DOTA-daratumumab combined with fludarabine, melphalan and TMLI may be safe, tolerable, and/or effective as conditioning treatment for donor stem cell transplant in patients with high-risk AML, ALL, and MDS.

NCT ID: NCT06287229 Not yet recruiting - Relapsed/Refractory Clinical Trials

Phase Ib/II Study Assessing the Clinical Activity and Safety of Brexucabtagene Autoleucel as a Consolidation in Patients With Relapsed/Refractory (R/R) and Newly Diagnosed B-cell Acute Lymphocytic Leukemia (ALL) Post Cytoreduction With Mini-HCVD-inotuzumab-blinatumomab/HCVAD-inotuzumab-blinatumomab

Start date: August 31, 2024
Phase: Phase 1/Phase 2
Study type: Interventional

To learn about the safety of giving the drug brexucabtagene autoleucel to participants with relapsed/refractory B-cell ALL after treatment with inotuzumab ozogamicin, blinatumomab, and either hyper-CVAD or mini-hyper-CVD. Also, to learn if giving brexucabtagene autoleucel to patients with relapsed/refractory or high-risk, newly diagnosed B-cell ALL after treatment with inotuzumab ozogamicin, blinatumomab, and either hyper-CVAD or mini-hyper-CVD can help to control the disease.

NCT ID: NCT06257394 Not yet recruiting - Clinical trials for Acute Lymphoblastic Leukemia, Pediatric

Treatment of Pediatric Very High-risk Acute Lymphoblastic Leukemia in Korea

VHR ALL
Start date: March 1, 2024
Phase: Phase 2
Study type: Interventional

Very high-risk acute lymphoblastic leukemia

NCT ID: NCT06251648 Not yet recruiting - Cancer Clinical Trials

Acute Lymphoblastic Leukaemia Related to Lenalidomide (LenALL)

Start date: February 1, 2024
Phase:
Study type: Observational

Although lenalidomide (LEN) have proved effective in treating many cancers, few patients receiving LEN may experience rare but life-threatening adverse events such as Acute Lymphoblastic Leukaemia (ALL). Today, data about ALL are scarce. The objective was to investigate reports of ALL adverse events related to LEN in patients with cancer using the World Health Organization (WHO) pharmacovigilance database.

NCT ID: NCT06242353 Not yet recruiting - Clinical trials for Acute Lymphoblastic Leukemia

Coagulopathy in Childhood Acute Lymphoblastic Leukaemia

CoagCALL
Start date: March 1, 2024
Phase:
Study type: Observational

The goal of this study is to investigate the hemostatic balance in children with acute lymphoblastic leukaemia (ALL) treated according to the ALLTogether1 protocol with focus on the early treatment period including concomitant use of steroids and asparaginase. The investigators aim to determine if complement proteins or microparticles can be used as clinically relevant predictive or diagnostic biomarkers for thrombosis and if global hemostatic assays can predict bleeding or thrombosis. Characterization of proteins connected to hemostasis before and during ALL treatment may provide pathophysiological insights regarding ALL- and treatment related coagulopathy. The ultimate goal of the study is to minimize the morbidity and mortality related to thrombosis and bleeding complications in children with ALL. Several pediatric oncology centers in Sweden will be participating in this study, which will enroll approximately 100 pediatric patients.