View clinical trials related to Kidney Neoplasms.
Filter by:The objective of this single-center clinical trial was to evaluate the objective response rate and safety of Toripalimab combined with tyrosine kinase inhibitors TKI (Lenvatinib) in neoadjuvant treatment of(T2a-T4NanyM0 or TanyN1M0) clear cell renal cell carcinoma.
The frequency of kidney tumors found incidentally on imaging studies performed for unrelated reasons continues to increase leading to more surgeries and ablations for the treatment of renal masses thought to be cancer. However, about 20% of these masses are not cancerous and do not require treatment. Many cancerous kidney tumors are indolent and can be followed safely with imaging (i.e., particularly tumors <2 cm and in patients with limited life expectancy), while some tumors are both malignant and aggressive, with a higher potential to spread outside the kidney and require treatment. The purpose of this observational study is to assess the ability of Fludeoxyglucose (18F) (FDG) PET/MR to distinguish different types of kidney tumors. The investigators hypothesize that PET/MR will better show differences between aggressive and both indolent and benign kidney masses compared to the currently used radiologic scans. Participants will be selected from those who have been scheduled to receive a contrast-enhanced MRI for their regular care due to a suspicious kidney mass. Participants will have their MRI on a hybrid PET/MR scanner capable of obtaining both MRI and PET images. While they are receiving their standard of care MRI exam, patients will also receive a research FDG PET exam. Participants will have an IV placed for administration of the MRI contrast agent, just as they would if they were not taking part in the study. The same IV will be used to give the FDG radiopharmaceutical for the PET scan and furosemide (a diuretic), to help empty the bladder before the scan and help better see the kidneys on the scans. Both FDG and furosemide are FDA approved medications. Participants will have only one visit with the research team which will last ~2.5 hours and will include collection of the participant's regularly scheduled MRI. If participants undergo surgery to remove the tumor, the study will collect samples of the removed tissue for research. If participants receive a biopsy of the tumor, the study may collect an additional sample of the tumor for research. After the PET/MRI, participants will not have additional visits with the study team, but the study team may call every 6-12 months for up to 2 years to see how they are doing and ask about their health. The study team will review the medical record for any changes to their diagnosis, updates to their medical history, new scans ordered by their regular doctor, or recent lab or biopsy results.
The goal of this National Registry is to is to collect information from patients with rare kidney diseases, so that it that can be used for research. The purpose of this research is to: - Develop Clinical Guidelines for specific rare kidney diseases. These are written recommendations on how to diagnose and treat a medical condition. - Audit treatments and outcomes. An audit makes checks to see if what should be done is being done and asks if it could be done better. - Further the development of future treatments. Participants will be invited to participate on clinical trials and other studies. The registry has the capacity to feedback relevant information to patients and in conjunction with Patient Knows Best (Home - Patients Know Best), allows patients to provide information themselves, including their own reported quality of life and outcome measures.
This study is an open label Phase I/II study conducted according to a Fleming design, investigating the safety and the efficacy of 4 IV injections of 177Lu-PSMA-1 in patients with metastatic clear cell renal cancer. This trial is divided in 2 parts: - A safety run-in part aiming to assess the safety of 177Lu-PSMA-1 (with 6 patients treated at the starting activity = 7.4 GBq of 177Lu-PSMA-1, every 6 weeks (Q6W) for 4 administrations). If more than one patient experiences a ST during the first cycle of therapy (6 weeks), then a lower activity of 177Lu-PSMA-1 will be evaluated in an additional cohort of 6 patients (5.9 GBq). The 6 patients from this safety run-in step, treated at the activity selected for phase II, will be included in the evaluation of Phase II part. - A Phase II part aiming to assess the clinical activity of 177Lu-PSMA-1
The primary objective is to determine if 3D modelling shortens total console operation time as a surrogate endpoint for clinical outcomes like perioperative complications and morbidity in robotic-assisted partial nephrectomy.
It is a single-center randomized controlled trial that aims to figure out the effect of the hypotension prediction index (HPI) on the prevention of acute kidney injury (AKI) after robot-assisted urological surgery. The primary hypothesis is that HPI software guidance prevents postoperative AKI by reducing the duration and severity of intraoperative hypotension (IOH).
The project proposes to evaluate the interest of the UroConnect remote monitoring Medical Device (DM) to optimize patient support and nursing coordination
The MRI linac Unity is a major technological evolution in radiotherapy combining a linear accelerator with a 1.5T MRI (radiological quality). It allows to target the target volume more precisely and to adapt the daily dose distribution according to variations in the position and volume of the tumor, critical organs and the tumor response. In many studies conducted in radiology, the analysis of specific MRI sequences, particularly in radiomics, aims to characterize tumors and their sensitivity to treatment. Initial data show that in radiotherapy, it would eventually be possible to characterize the radiosensitivity of healthy and tumorous tissues. With linac 1.5T MRI, the performance of selected MRI sequences, at each session, could make it possible to identify different levels of radiosensitivity within the tumour. The reproduction of these sequences on a daily basis could make it possible to follow the variations in radiosensitivity during the treatment. The final objectives would be: 1- to adapt the doses of radiotherapy to each session with a modulation of the dose according to the daily level of intra-tumor radiosensitivity, 2- to develop Artificial Intelligence (AI) tools allowing an analysis sequences and the generation of 3D maps of intra-tumor radiosensitivity, fast and suitable for carrying out a radiotherapy session. A first work carried out in collaboration with the CREATIS lab of the University Claude Bernard Lyon 1 (UCBL1) made it possible to generate maps of tissue oxygenation from sequences produced on the MRI linac Unity of the Hospices Civils de Lyon (T2* , IVIM, Carto T2 Multi Echo-Gradient). Hypoxia is known to be the first factor of tumor resistance to irradiation. A research program is structured in collaboration with UCBL1 in order to develop radiobiological adaptive radiotherapy approaches, based on 3D maps of intra-tumoral hypoxia and their variation during treatment. Several tumor locations were selected because of the preponderant place of MRI in tumor characterization: prostate, cervix, kidney, ENT and glioblastoma. Hypoxia is not the only factor of radioresistance. Changes in the microenvironment could also impact the sensitivity of tumor cells. The program will therefore also aim to optimize the maps initially based on hypoxia, by identifying other relevant factors to be taken into account to define intra-tumor sensitivity.
The aim of this study is to develop techniques for non-invasive imaging of biology in participants with benign or malignant renal masses based on the novel scanning MRI techniques, including recently invented Hyperpolarised MRI, deuterium metabolic imaging and sodium MRI. This imaging study will: 1) acquire imaging data from human tissues following the injection of hyperpolarised 13C pyruvate and use 13C-MRI to monitor changes in the ratio of 13C-lactate to 13C-pyruvate; 2) acquire imaging data from human tissues using Sodium MRI or 3) acquire imaging data from human tissues following the oral consumable of deuterated glucose. Data acquired during this physiological study will be used to optimise future imaging protocols.In the UK and possibly in other countries, there are some patients with renal masses that are over treated or undergo unnecessary procedures such as surgery or biopsies, as they are thought to have a malignant tumour or a more aggressive tumour but after the procedure it is found that the mass was benign. The aim of this study is to determine whether one or all of these imaging techniques can differentiate between benign and malignant renal masses with the view to developing the techniques further and hopefully reducing the need for over treatment or unnecessary procedures in patients with benign masses.
The goal of this observational study is to learn about the value of 18F-FAPI-RGD PET/CT imaging in Renal Tumor. Participants will undergo clinical evaluation and 18F-FAPI-RGD PET/CT examination.