Clinical Trials Logo

Ketosis clinical trials

View clinical trials related to Ketosis.

Filter by:

NCT ID: NCT05508490 Not yet recruiting - Clinical trials for AKI in Diabetic Ketoacidosis

Prevalence of Acute Kidney Injury in Patients With Diabetic Ketoacidosis

Start date: January 1, 2023
Phase:
Study type: Observational

prevalence of acute kidney injury in patients with diabetic ketoacidosis

NCT ID: NCT05501366 Recruiting - Ketosis Clinical Trials

Strategies to Augment Ketosis: Optimization of Ketone Delivery Strategies

STAK: OK'd
Start date: June 5, 2023
Phase: N/A
Study type: Interventional

One important difference between KE compounds is the ketone-promoting components, which determines the circulating ratio of blood ketone bodies, BHB and AcAc, and may in turn lead to important metabolic and signaling differences. Whereas some actions of the ketone bodies BHB and AcAc are shared, R-BHB has a broad range of signaling functions that are distinct from AcAc, some of which are shared by the non-circulating, non-oxidizable enantiomer, S-BHB. AcAc also has metabolic and signaling actions that are independent of BHB and is selectively oxidized in some cells that cannot oxidize BHB. Furthermore, responses to different ketone bodies vary between tissue types. A second difference between KE arises from the balance between direct delivery of ketones compared to indirectly elevating ketone concentration via metabolism of non-classical or classical ketogenic precursors. Classical ketogenesis itself may drive adaptation and some of the functional benefits associated with ketosis. BDO is included in all of the KE compounds, but it is currently unknown how consumption of BDO alone, and its metabolism via non-classical ketogenesis acutely affects metabolism. Additionally, ketogenesis is now understood to occur in certain cells outside the liver with important local biological effects, for example ketogenesis driven by medium chain fatty acids has been reported in astrocytes in vitro. Provision of systemic BHB by a KE may elicit different biological effects in some tissues such as the brain versus promoting in situ ketogenesis in that tissue. Overall, not only are functional effects of KE incompletely defined, but also it is unknown which effects are common to all KE versus which are specific to an individual KE compound (i.e., BHB Monoester vs AcAc Diester) or which may be attributable to the BDO precursor common to all of the KE. This study will be the first comparative full crossover study of all available KE and the precursor BDO at two serving sizes. Outcomes will focus on established effects of the BHB Monoester (including the effects on ketones, glucose and acid-base balance) and compare these with the effects of the AcAc Diester, C8 Ketonef Diester and BDO.

NCT ID: NCT05488262 Completed - Ketoacidosis Clinical Trials

Management in Intensive Care Unit of Life-threatening Keto-Acidosis

MILKA
Start date: February 2, 2024
Phase:
Study type: Observational

Patients hospitalized in intensive care between January 2014 and December 2023 for ketoacidosis complicated by organ failure in participating departments.

NCT ID: NCT05477368 Active, not recruiting - Diabetes Clinical Trials

Examining the Feasibility of Prolonged Ketone Supplement Drink Consumption in Adults With Type 2 Diabetes

Start date: September 28, 2022
Phase: N/A
Study type: Interventional

Ketones are a source of energy and signaling molecule that are produced by the body when not consuming any food or consistently eating a low-carbohydrate "keto" diet. Blood ketones can be used as a source of energy by the body, but they may also act as signals that impact how different cells in the body function. Recently, ketone supplements have been developed that can be consumed as a drink. These supplements can raise blood ketones without having to fast or eat a "keto" diet. Previous studies have shown that these supplement drinks can lower blood sugar without having to make any other dietary changes. Drinking these ketone supplements may therefore be an effective strategy to improve blood sugar control and influence how cells function. To find out if it is feasible for people with type 2 diabetes to drink these ketones supplements regularly over 90 days, we will compare between two groups in this study: one group that will be asked to drink ketone supplements, and one group that will be asked to drink a placebo supplement.

NCT ID: NCT05443802 Recruiting - Clinical trials for Diabetic Ketoacidosis

Comparison of a Low Dose to a Standard Dose of Insulin in Adult DKA in ICU to Reduce Metabolic Complications

LOSTINDIAB
Start date: August 16, 2022
Phase: N/A
Study type: Interventional

Diabetic ketoacidosis (DKA), a frequent complication of diabetes, is the consequence of a profound insulin deficiency responsible for osmotic polyuria and thus major losses of water, glucose, sodium and potassium as well as a metabolic acidosis due to the uncontrolled production of ketonic acids. Management includes fluid replacement, insulin therapy and correction of metabolic disorders (including potassium loss). Initially described in patients with type 1 diabetes (T1D), it is now often observed in patients with type 2 diabetes (T2D) in whom it is more a matter of insulin resistance than an absolute deficiency. However, international guidelines recommend a similar dose of intravenous insulin (0.10 IU/kg/hour) regardless of the type of diabetes. During treatment, metabolic complications are frequent and potentially serious, especially in T2D due to cardiovascular comorbidities. The research hypothesis is that decreasing the insulin dose will reduce metabolic complications without influencing time to resolution in adult patients, regardless of diabetes type.

NCT ID: NCT05442918 Completed - Diabetes Mellitus Clinical Trials

Expected Normal Ketone Values After Very Low and Bariatric Surgery

Start date: January 15, 2020
Phase:
Study type: Observational

The investigators propose a multicenter prospective study in patients undergoing either an elective bariatric procedure or an elective benign procedure, including laparoscopic/open cholecystectomy, laparoscopic/open hiatus hernia repair, laparoscopic/open inguinal hernia repair, laparoscopic/open umbilical hernia repair or laparoscopic ventral wall hernia repair. Perioperative blood ketone and venous blood gas levels will be measured pre-surgery, post-surgery and on post-operative days until discharge. Our primary research objective is to clarify the expected perioperative ketone and blood gas levels in elective bariatric patients who have been on a VLCD and fasting for surgery, compared to elective surgical patients who have only been fasting prior to surgery.

NCT ID: NCT05439928 Not yet recruiting - Clinical trials for Diabetic Ketoacidosis

Remote Glucose Monitoring System in Hospitalized Patients With Diabetic Ketoacidosis (DKA)

Start date: July 2022
Phase: N/A
Study type: Interventional

The purpose of this research study is to investigate the use of continuous glucose monitoring (CGM) device DEXCOM G6 in non-critically patients treated for diabetic emergency such as diabetic ketoacidosis (DKA). Patients who have DKA require hourly monitoring of glucose (sugar) level which traditionally requires admission to the intensive care unit (ICU) for hourly fingerstick monitoring. With the use of CGM device, in this research study hourly fingerstick monitoring is replaced by continuous glucose monitor (CGM) which provides glucose levels continuously in real time for nurses and provider. The investigators are testing to see if in the future patients can be treated in the stepdown unit (an intermediate care level between the intensive care unit and the general medical unit) if they do not require higher level of care besides hourly glucose monitoring. Continuous glucose monitoring (CGM) device DEXCOM G6 currently FDA Approved for patients with diabetes and is widely used for glucose monitoring in patients with diabetes in the outpatient setting. The investigators want to study the use of the DEXCOM G6 CGM in the inpatient setting to monitoring glucose levels remotely in the treatment of diabetic emergencies such as diabetic ketoacidosis and compare their care to those receiving hourly fingerstick glucose monitoring in the ICU.

NCT ID: NCT05439720 Active, not recruiting - Sleep Clinical Trials

Acute Effect of Exogenous Ketosis on Sleep Architecture Following Strenuous Exercise

Start date: May 15, 2022
Phase: Phase 2
Study type: Interventional

The aim of this study is to investigate the effect of oral ketone ester administration on sleep architecture. To investigate this, the investigators use a randomised, placebo-controlled, cross-over research design. The study comprises three experimental sessions, each separated by a one-week washout period. Two of the three experimental sessions consist of a 120 minutes cycling endurance training session (ET) two hours after breakfast and an evening high-intensity-interval training (HIIT) ending one hour before bedtime. After each training session, and 30 minutes before sleeptime, subjects receive a ketone ester or a control drink . To investigate the effects of strenuous exercise on sleep alone, an additional experimental session without exercise is added. Before bedtime, a venous blood sample is taken to evaluate hormones playing an important role in sleep regulation. During the experimental sessions, the subjects sleep in a sleep facility to evaluate quality of sleep. Time spent in different sleep phases is measured via polysomnography (PSG). Urine output throughout the day and night will be collected for measurement of urinary excretion of adrenaline and noradrenaline as an index of intrinsic sympathetic activity.

NCT ID: NCT05407753 Active, not recruiting - Exercise Clinical Trials

Effect of Exogenous Ketosis During Ultra-endurance Exercise

Start date: May 20, 2021
Phase: Phase 2
Study type: Interventional

The aim of this study is to investigate the effect of oral ketone administration during and immediately after an ultramarathon. Potential changes in cognitive function (reaction time, number of errors), running performance, jump height, skeletal muscle inflammatory infiltration and hormonal alterations will be the main focus. In this context, subjects (n=24) will perform a 100km ultrarunning trail, while receiving either ketone ester (KE, n =12) or placebo (CON, n=12). Experimental measurements will be performed immediately before and after the ultramarathon as well as 24h after the ultramarathon.

NCT ID: NCT05402579 Recruiting - Diabetes Type 2 Clinical Trials

Diabetic Ketoacidosis From New SGLT2i: Can Genomics Estimate Risk

DaNGER
Start date: July 29, 2022
Phase:
Study type: Observational

Sodium glucose co-transporter 2 (SGLT2) inhibitors have revolutionized care for people living with type 2 diabetes mellitus (T2DM). They reduce a person's risk of heart failure, renal failure, myocardial infarction, stroke, cardiovascular mortality, and potentially all-cause mortality. Remarkably, some of these benefits also extend to people who do not have T2DM. While the benefits of SGLT2 inhibitors are impressive, there is one life-threatening side effect associated with their use: diabetic ketoacidosis (DKA). The ability to predict which patients are at highest risk of DKA is needed to sufficiently mitigate this risk. Moreover, considering the impressive benefits of SGLT2 inhibitors, identifying patients at the lowest risk of SGLT2 inhibitor-associated DKA is also important so that providers do not overestimate risk in those who stand to benefit most. Advances in genomic technologies and related analyses have provided unprecedented opportunities to bring genomics-driven precision medicine initiatives to the forefront of clinical research. Leading these developments has been the progress made by genome-wide association studies (GWAS) due to decreasing genotyping costs, and consequently, the ability to routinely study large numbers of patients. These approaches allow for systematic screening of the genome in an unbiased manner and have accelerated the discovery of genetic variants and novel biological processes that contribute to the development of adverse treatment outcomes. By using innovative approaches, which harness large cohorts of population controls, sample size limitations that are associated with rare adverse drug reactions such as SGLT2 inhibitor-associated DKA can be overcome. The DANGER study represents a highly innovative new direction wherein partnership among basic science researchers and computational biologists will lead to the application of genomic techniques to identify genetic variants that may be associated with SGLT2 inhibitor-associated DKA.