Clinical Trials Logo

Intracranial Hypertension clinical trials

View clinical trials related to Intracranial Hypertension.

Filter by:

NCT ID: NCT05609071 Active, not recruiting - Brain Diseases Clinical Trials

Technology of Intracranial Pressure Estimation by Single-Channel EEG in Brain Disease

Start date: March 22, 2022
Phase:
Study type: Observational

If intracranial pressure can be measured non-invasively using single-channel EEG, clinicians will be able to easily monitor changes in intracranial pressure in patients with brain diseases in the clinical setting. Therefore, a more efficient treatment plan can be established and the prognosis of patients with brain disease can be expected to improve in the long term.

NCT ID: NCT05593380 Not yet recruiting - Critical Care Clinical Trials

The Effect of BIA Monitoring of Brain Edema on the Neurological Prognosis of Supratentorial Massive ICH

BIATICH
Start date: October 15, 2022
Phase: N/A
Study type: Interventional

Spontaneous cerebral hemorrhage (SICH) is a hemorrhage caused by the rupture of a blood vessel within the brain parenchyma that is non-traumatic. Its rapid onset and dangerous condition seriously threaten human health; it accounts for about 15% of strokes and 50% of stroke-related mortality. Hunan Province is recognized as one of the high incidence areas of cerebral hemorrhage in the world; according to statistics, the direct economic loss caused by cerebral hemorrhage in Hunan Province is more than 1 billion yuan per year, which should be paid great attention. A 30-day follow-up study of large-volume cerebral hemorrhage (defined as supratentorial hemorrhage greater than 30 ml, infratentorial greater than 5 ml, and thalamus and cerebellum greater than 15 ml) found that the morbidity and mortality rate of ICH with hemorrhage of 30-60 ml was as high as 44-74%, while the morbidity and mortality rate of ICH with hemorrhage of <30 ml was 19% and that of >60 ml was 91%. According to studies, the occurrence of hematoma occupancy and malignant cerebral edema in large-volume cerebral hemorrhage can lead to secondary malignant intracranial pressure elevation and subsequent secondary brain injury, which are the main factors of high morbidity and mortality and poor prognosis in patients with large-volume cerebral hemorrhage. Clinical monitoring and management is the key to treatment, and despite aggressive surgical treatment and anti-brain edema therapy, a large number of patients progress to malignant brain edema disease, leading to poor outcomes. Therefore, this project intends to conduct a multicenter clinical trial of non-invasive monitoring of large volume cerebral hemorrhage on the curtain in the Hunan region to explore the impact of non-invasive brain edema monitoring management based on bioelectrical impedance technology on patient prognosis; and to explore early biomarkers of malignant brain edema through metabolomic analysis and the mechanism of malignant brain edema occurrence through multi-omic analysis to provide data support for the clinical treatment application of malignant brain edema.

NCT ID: NCT05499754 Completed - Clinical trials for Intracranial Pressure Increase

Effect of Different Supralottic Airway Devicess on Optic Nerve Sheath Diameter

Start date: July 1, 2019
Phase:
Study type: Observational

Direct laryngoscopy and tracheal intubation are associated with increases in intraocular pressure (IOP), intracranial pressure (ICP), heart rate (HR), and blood pressure. The use of supraglottic airway devices (SADs) are known to be beneficial in overcoming the disadvantages of laryngoscopy and tracheal intubation, especially ocular and pressure stress responses. In recent years, it has been reported that ultrasonographic measurement of optic nerve sheath diameter (ONSD) can be used in the diagnosis of increased ICP. The aim of our study is to compare the effects of Proseal laryngeal mask airway (pLMA), Suprem laryngeal mask airway (sLMA) and I-gel on hemodynamic response and ONSD during insertion in adult patients.

NCT ID: NCT05445271 Not yet recruiting - Clinical trials for Intubation Complication

Optic Nerve Sheath Diameter in Pediatric Patients

Start date: July 1, 2022
Phase: N/A
Study type: Interventional

Endotracheal intubation and laryngeal mask are generally applied to secure the airway during general anesthesia. There is a widespread opinion among anesthesiologists that endotracheal intubation increases intracranial pressure. Since there were no non-invasive methods measuring intracranial pressure in the past, adequate studies on this subject could not be done. With this measurement, we aimed to show whether ETT or LMA applications have effects on intracranial pressure.

NCT ID: NCT05434975 Recruiting - Clinical trials for Brachial Plexus Block

The Effect of Interscalene Block on Intracranial Pressure

Start date: February 25, 2022
Phase: N/A
Study type: Interventional

The study aims to show the effects of interscalene brachial plexus (ISBP) block on intracranial pressure by measuring optic nerve sheath diameter (ONSD) and internal vein collapsibility index (IJV-CI).

NCT ID: NCT05397106 Recruiting - Brain Tumor Clinical Trials

Post Market Clinical Follow-up of CODMAN CERTAS Programmable Valve

Start date: January 24, 2023
Phase:
Study type: Observational

Post-Market Clinical Follow-up Registry of Patients with CODMAN CERTAS Plus Programmable Valves.

NCT ID: NCT05347147 Terminated - Clinical trials for Idiopathic Intracranial Hypertension

A Trial to Determine the Efficacy and Safety of Presendin in IIH

IIH EVOLVE
Start date: November 18, 2022
Phase: Phase 3
Study type: Interventional

Idiopathic intracranial hypertension (IIH) has significant associated morbidity and reduced quality of life. There is a significant risk of visual loss and patients also typically suffer with chronic disabling headaches. This trial has been designed to evaluate the efficacy and safety of a new formulation of exenatide (Presendin) in the reduction of intracranial pressure (ICP) in patients with IIH.

NCT ID: NCT05346471 Recruiting - Clinical trials for Intracranial Pressure Increase

Infra- and Supratentorial Neuromonitoring

DUAL-ICP
Start date: June 3, 2019
Phase: N/A
Study type: Interventional

Invasive neuromonitoring of intracranial pressure (ICP) is an important element of neurosurgical critical care that is used primarily as an indicator of adequate cerebral perfusion in patients, when clinical observation is not an option. Due to the constraint in size and the critical structures within the posterior fossa, detection of intracranial pressure particularly in the postoperative phase has been deemed desirable in patients with surgery in this region, particularly in those subjected to prolonged procedures and critical care. The posterior fossa is an anatomically constricted compartment with narrow spaces and intracranial hypertension quickly leads to brainstem damage and neurological dysfunction. ICP in the supratentorial space not necessarily correlates with ICP in the infratentorial space. Some authors claim that it would be beneficial to measure ICP in infratentorial space after posterior fossa surgery in some cases. The relationship between the intracranial pressure profiles in the supratentorial and infratentorial compartments remain unclear. After a neurosurgical operation in the posterior fossa there are most likely pressure differences between supra- and infratentorial spaces. It is well known that the pressure within the skull is unevenly distributed, with appreciable ICP gradients. Thus, the investigators intend to apply the intracranial multimodal monitoring in both infratentorial and supratentorial compartments simultaneously. Such coincident measurements most likely will be the most sensitive way to assess focal swelling, ischemia and tissue perfusion, or other relevant complications in the posterior fossa structures. The goal of this study is to test whether direct infratentorial monitoring is a more efficacious method for detecting dynamic changes in the operative compartment and whether it is safe, in view of the critical structures within the region.

NCT ID: NCT05340062 Recruiting - Clinical trials for Intracranial Hypertension

Non Invasive Measurement With Trans Cranial Doppler Versus Invasive Measurement in Pediatric Age

nICPped
Start date: July 1, 2022
Phase:
Study type: Observational

An increase of intracranial pressure (ICP) is an important cause of secondary brain damage. The gold standard for measuring ICP is represented by invasive positioning of intracranial ICP devices. The most used non-invasive methods (nICP) are obtained through bed-side ultrasound, routinely used in the management of children in Pediatric Intensive Care: arterial Trancranial Doppler (TCD) and ultrasound measurement of the diameter of the optic nerve sheath (ONSD ). In this study it is proposed to compare the measurement of nICP obtained by TCD and ONSD versus the measurement obtained by the invasive monitoring (iICP) already present.

NCT ID: NCT05308823 Enrolling by invitation - Clinical trials for Idiopathic Intracranial Hypertension

Outcome of Cerebral Venous Sinuses Stenting on Idiopathic Intracranial Hypertension

Start date: March 15, 2022
Phase: N/A
Study type: Interventional

The aim of the work is to asses the positive effect of stenotic sinus segment stenting on idiopathic intracranial hypertension with headache and papilloedema.