Clinical Trials Logo

Intracranial Hypertension clinical trials

View clinical trials related to Intracranial Hypertension.

Filter by:

NCT ID: NCT05731765 Active, not recruiting - Clinical trials for Intracranial Pressure Increase

SVP Detection Using Machine Learning

SVP-ML
Start date: March 1, 2023
Phase:
Study type: Observational

This diagnostic study will use 410 retrospectively captured fundal videos to develop ML systems that detect SVPs and quantify ICP. The ground truth will be generated from the annotations of two independent, masked clinicians, with arbitration by an ophthalmology consultant in cases of disagreement.

NCT ID: NCT05707442 Recruiting - Clinical trials for Venous Sinus Stenosis

Stent Implantation Versus Medical Therapy for Idiopathic IntracraniaL Hypertension (SIMPLE)

Start date: October 31, 2022
Phase: Phase 3
Study type: Interventional

The aim of this study is to assess the efficacy of stent implantation versus medical therapy on idiopathic intracranial hypertension with venous sinus stenosis.

NCT ID: NCT05668208 Completed - Clinical trials for Intracranial Pressure Increase

Do Extraperitoneal Laparoscopic Surgeries Increase Intracranial Pressure?

Start date: January 6, 2023
Phase: N/A
Study type: Interventional

When the literature is examined, it has been reported in many studies that intracranial pressure increases due to laparoscopic procedures performed in the intraperitoneal area. The mechanism of increased intracranial pressure (ICP) associated with insufflation is most likely due to impaired venous drainage of the lumbar venous plexus at increased intra-abdominal pressure. Changes in ICP can be monitored by ultrasonographic measurement of optic nerve sheath diameter (ONSD), which is a generally accepted simple, reliable and non-invasive ICP measurement technique. In meta-analyses conducted on this subject, it has been revealed that ICP elevation during laparoscopy can be observed with a significant increase in ONSD in the early (0 30 minutes) and late (30-120 minutes) periods during carbondioxid (CO2) pneumoperitoneum. However, the effect of laparoscopic procedures performed in the extraperitoneal area on the central nervous system is not clear. There is not found any study in the literature comparing laparoscopic procedures, especially performed extraperitoneally and transperitoneally, and their effects on intracranial pressure. The aim of the study compare to laparoscopic cholecystectomy performed in the transperitoneal area and (totally extra-peritoneal) TEP inguinal hernia repair performed in the extraperitoneal area in terms of intracranial pressure relationship.

NCT ID: NCT05647837 Recruiting - Clinical trials for Intracranial Hypertension

CSF Biomarkers in Idiopathic Intracranial Hypertension

Start date: December 1, 2021
Phase: N/A
Study type: Interventional

Aim of the study is to high lighten the rule of CSF biomarkers in early diagnosis of IIH and in follow up to reach to a definite clinically based decision if this patient will improved on medical treatment or that patient is in need for surgical intervention.

NCT ID: NCT05632302 Completed - Clinical trials for Traumatic Brain Injury

A Non-invasive Intracranial Pressure (nICP) Monitoring System

Start date: January 20, 2020
Phase: N/A
Study type: Interventional

Researchers have developed a probe that contains infrared light sources that can illuminate the deep brain tissue of the frontal lobe. Photodetectors in the probe detect the backscattered light, which is modulated by pulsation of the cerebral arteries. Changes in the extramural arterial pressure affect the morphology of the recorded optical pulse, so analysis of the acquired signal using an appropriate algorithm could enable the calculation of the intracranial pressure noninvasively (nICP), which would be displayed to clinicians continuously. This pilot study is the first evaluation of the device in patients in who the gold standard comparator of invasive ICP was available. The acquisition of pulsatile optical signals was performed for up to 48 hours in each of the 40 patients who were undergoing invasive ICP monitoring as part of their normal medical treatment. Features of the optical signals would be analysed offline. A machine vector support algorithm would be implemented, with the aim of estimating ICP noninvasively and compared to the gold standard of synchronously acquired invasive ICP data.

NCT ID: NCT05609071 Active, not recruiting - Brain Diseases Clinical Trials

Technology of Intracranial Pressure Estimation by Single-Channel EEG in Brain Disease

Start date: March 22, 2022
Phase:
Study type: Observational

If intracranial pressure can be measured non-invasively using single-channel EEG, clinicians will be able to easily monitor changes in intracranial pressure in patients with brain diseases in the clinical setting. Therefore, a more efficient treatment plan can be established and the prognosis of patients with brain disease can be expected to improve in the long term.

NCT ID: NCT05593380 Not yet recruiting - Critical Care Clinical Trials

The Effect of BIA Monitoring of Brain Edema on the Neurological Prognosis of Supratentorial Massive ICH

BIATICH
Start date: October 15, 2022
Phase: N/A
Study type: Interventional

Spontaneous cerebral hemorrhage (SICH) is a hemorrhage caused by the rupture of a blood vessel within the brain parenchyma that is non-traumatic. Its rapid onset and dangerous condition seriously threaten human health; it accounts for about 15% of strokes and 50% of stroke-related mortality. Hunan Province is recognized as one of the high incidence areas of cerebral hemorrhage in the world; according to statistics, the direct economic loss caused by cerebral hemorrhage in Hunan Province is more than 1 billion yuan per year, which should be paid great attention. A 30-day follow-up study of large-volume cerebral hemorrhage (defined as supratentorial hemorrhage greater than 30 ml, infratentorial greater than 5 ml, and thalamus and cerebellum greater than 15 ml) found that the morbidity and mortality rate of ICH with hemorrhage of 30-60 ml was as high as 44-74%, while the morbidity and mortality rate of ICH with hemorrhage of <30 ml was 19% and that of >60 ml was 91%. According to studies, the occurrence of hematoma occupancy and malignant cerebral edema in large-volume cerebral hemorrhage can lead to secondary malignant intracranial pressure elevation and subsequent secondary brain injury, which are the main factors of high morbidity and mortality and poor prognosis in patients with large-volume cerebral hemorrhage. Clinical monitoring and management is the key to treatment, and despite aggressive surgical treatment and anti-brain edema therapy, a large number of patients progress to malignant brain edema disease, leading to poor outcomes. Therefore, this project intends to conduct a multicenter clinical trial of non-invasive monitoring of large volume cerebral hemorrhage on the curtain in the Hunan region to explore the impact of non-invasive brain edema monitoring management based on bioelectrical impedance technology on patient prognosis; and to explore early biomarkers of malignant brain edema through metabolomic analysis and the mechanism of malignant brain edema occurrence through multi-omic analysis to provide data support for the clinical treatment application of malignant brain edema.

NCT ID: NCT05499754 Completed - Clinical trials for Intracranial Pressure Increase

Effect of Different Supralottic Airway Devicess on Optic Nerve Sheath Diameter

Start date: July 1, 2019
Phase:
Study type: Observational

Direct laryngoscopy and tracheal intubation are associated with increases in intraocular pressure (IOP), intracranial pressure (ICP), heart rate (HR), and blood pressure. The use of supraglottic airway devices (SADs) are known to be beneficial in overcoming the disadvantages of laryngoscopy and tracheal intubation, especially ocular and pressure stress responses. In recent years, it has been reported that ultrasonographic measurement of optic nerve sheath diameter (ONSD) can be used in the diagnosis of increased ICP. The aim of our study is to compare the effects of Proseal laryngeal mask airway (pLMA), Suprem laryngeal mask airway (sLMA) and I-gel on hemodynamic response and ONSD during insertion in adult patients.

NCT ID: NCT05445271 Not yet recruiting - Clinical trials for Intubation Complication

Optic Nerve Sheath Diameter in Pediatric Patients

Start date: July 1, 2022
Phase: N/A
Study type: Interventional

Endotracheal intubation and laryngeal mask are generally applied to secure the airway during general anesthesia. There is a widespread opinion among anesthesiologists that endotracheal intubation increases intracranial pressure. Since there were no non-invasive methods measuring intracranial pressure in the past, adequate studies on this subject could not be done. With this measurement, we aimed to show whether ETT or LMA applications have effects on intracranial pressure.

NCT ID: NCT05434975 Recruiting - Clinical trials for Brachial Plexus Block

The Effect of Interscalene Block on Intracranial Pressure

Start date: February 25, 2022
Phase: N/A
Study type: Interventional

The study aims to show the effects of interscalene brachial plexus (ISBP) block on intracranial pressure by measuring optic nerve sheath diameter (ONSD) and internal vein collapsibility index (IJV-CI).