Clinical Trials Logo

Clinical Trial Summary

Over recent decades, the use of intracytoplasmic sperm injection (ICSI) has increased, even among patients without severe male factor infertility. Despite the increasing use, there is no evidence to support that ICSI results in a higher live birth rate compared to conventional in vitro fertilisation (IVF) in cases without severe male factor infertility. The primary objective of this trial is to determine whether ICSI is superior to standard IVF in patients without severe male factor infertility. The primary outcome measure is live birth rate. A total of 824 participants with infertility without severe male factor will be included in the study and allocated randomly into two groups (IVF or ICSI). The main inclusion criteria for the women are age 18-42 years, normal to slightly decreased male partner sperm/ use of donor sperm and no prior fertility treatment. In addition to live birth rate, outcome measures include fertilisation rate, total fertilisation failure, embryo quality, clinical pregnancy, miscarriage rate, preterm delivery, birth weight and congenital anomalies of the child. The study will be performed in accordance with the ethical principles in the Helsinki Declaration. The study is approved by the Scientific Ethical Committee of the Capital Region of Denmark and the Knowledge Centre on Data Protection Compliance. Study findings will be presented in international conferences and submitted for publication in peer-reviewed journals.


Clinical Trial Description

Background All over the world the use of intracytoplasmic sperm injection (ICSI) with the injection of a single spermatozoon into an oocyte has gradually increased since the first report of an ICSI conceived child more than 25 years ago (Palermo et al. 1992). The latest reports from the European Society of Human Reproduction and Embryology (ESHRE) and The International Committee Monitoring Assisted Reproductive Technologies (ICMART) show that standard IVF is now used in one-third of fresh assisted reproductive technology (ART) cycles, whereas ICSI accounts for as much as two-thirds of the cycles (Dyer et al. 2016, Calhaz-Jorge et al. 2017). ICSI was initially used in fertility treatment with severe male factor infertility. However, over the years a shift towards using ICSI for other indications such as unexplained infertility, mixed factor infertility or mild male factor infertility has happened (Boulet et al., 2015; Dyer et al., 2016). Today, there is no clear evidence that using ICSI over conventional IVF in cases with non-male factor infertility yields better results (van Rumste et al., 2003). In a randomised controlled trial (RCT) from 2001 including 415 couples, better fertilisation and implantation rates after conventional IVF compared to ICSI was reported (Bhattacharya et al., 2001). In contrast, another earlier prospective study including 35 women age 21-44 years, found a better fertilisation rate after ICSI compared to sibling oocytes treated with standard IVF (Khamsi et al., 2001). A retrospective study including 745 women with non-male factor infertility reported no advantage of ICSI over conventional IVF in women aged 40 years or older (Tannus et al., 2017). In line with this, so-called poor responders with a single oocyte retrieved was shown to have similar reproductive outcomes after IVF and ICSI in a retrospective study from 2015 (Sfontouris et al., 2015). RCTs comparing outcomes after IVF and ICSI in couples/women in fertility treatment with other indications than severe male factor infertility and with live birth rate as the primary endpoint are entirely missing. Despite this, the use of ICSI in this population continuous to increase. Therefore, a carefully designed RCT to determine whether ICSI results in higher live birth rates compared with standard IVF in patients without severe male factor infertility is warranted. Methods Study design: This study is a multicentre, randomised, controlled trial with six public fertility clinics in Denmark participating. All clinics are part of a university hospital setting and all hospitals perform standardised treatments according to the public health care system in Denmark. Participants: All women referred for their first fertility treatment at four public fertility clinics in Denmark will be screened for eligibility. Please see criteria for eligible patients under "Eligibility". Screening and inclusion: Patients who are potentially eligible will receive verbal and written information about the study by the investigators during their first consultation in the fertility clinic. Inclusion and randomisation of participants to either ICSI or conventional IVF will take place after the ovulation trigger has been prescribed and before the IVF/ICSI procedure. Women/couples who wish to participate in the trial are asked to sign an informed consent form prior to enrolment. They will have a minimum of two days between receiving the information and deciding whether they wish to participate in the study or not. Randomisation and data management: An independent statistician has prepared a computer-generated randomisation scheme in a I:I ratio between the two arms (IVF and ICSI) ensuring concealment of treatment allocation. Permuted blocks of variable size between 4 and 12 are used for randomisation. The randomisation scheme is stratified by fertility clinic and age (three age groups: 18-25, 26-37 and 38-41) to ensure that the number of participants receiving IVF and ICSI is closely balanced within each stratum. A designated physician or nurse from each study site is appointed. The appointed nurse/physician obtains the allocation of new patients being enrolled on their trial site. The allocation is obtained in the online platform REDCap which is also used for data collection during the study. The REDCap database has a complete audit trail and is based on anonymous subject ID numbers used in the trial. Statistical analysis: ITT analysis and per-protocol analysis will be performed. Baseline characteristics and outcomes will be compared using t-test, Mann-Whitney U test or chi-square tests for continuous and categorical variables or logistic regression analysis, controlling for possible confounding effects where appropriate. P-values of ≤ 0.05 will be considered statistically significant. Statistical analyses will be performed by an investigator together with statistical experts. The primary RCT analysis will be performed by an independent statistician blinded to group allocation. Sample size calculation: The rate of first live births after transfer of up to all of the transferable embryos from the first OPU is set to 45% in the conventional IVF group and 55 % in the ICSI group. This is a superiority trial with a power of 80% and a 2-sided p-value of 5%. The sample size is estimated to be 392 patients in each group. Post-randomization exclusion is expected to be 5%, resulting in a total of 824 patients. Intervention: The participants will receive conventional IVF or ICSI treatment as determined by randomisation. Both treatments are part of standard treatment regimens at the trial sites. The fertility treatment: The women have been treated in either a short gonadotropin-releasing hormone (GnRH)-antagonist protocol or a long GnRH-agonist protocol for ovarian stimulation. Both the controlled ovarian stimulation, transvaginal ultrasound examinations and the ovulation triggering are done according to the usual daily practice at the trial sites with ovulation trigger prescribed when a minimum of two to three follicles measure 17 mm or more. Women with only one mature follicle may also be prescribed the ovulation trigger. OPU is performed 36±2 hours after the ovulation trigger is administered. Oocyte insemination will be IVF or ICSI according to randomisation, using established procedures at the trial sites. However, short time insemination in the IVF arm is not allowed. Embryo culture and luteal phase support will follow the usual procedures at each trial site. Blastocyst transfer is performed on day 5. Patients with a poor ovarian reserve and few oocytes retrieved (≤4) are allowed transfer day 2 or 3 according to clinical practice. Single embryo transfers are planned. Surplus blastocysts of good quality are vitrified on day 5 or 6. Transfer and cryopreservation are done according to usual practice at each trial site. In cases with total freeze of all blastocysts due to the risk of ovarian hyperstimulation syndrome (OHSS), women are not excluded from the trial. In cases where all blastocysts or spare blastocysts are vitrified these are transferred in subsequent FET cycles according to the daily practice at each trial site (i.e., natural cycles, substituted or stimulated FET cycles). Urine pregnancy test or a serum pregnancy test is done 11-16 days after embryo transfer. If pregnancy is achieved, a transvaginal ultrasound scan is performed at pregnancy week 7-9 to confirm an ongoing and intrauterine pregnancy. Women will be asked to inform the clinic of the result of the pregnancy as is the usual procedure in the clinic. Outcomes: Please see "Outcome measures". Side effects / risks: Both IVF and ICSI are routinely used in the clinic for fertilising the oocytes. The risk of poor or no fertilisation of the oocytes exists for both IVF and ICSI. Since both fertilisation methods are a part of standard treatment in the fertility clinics, the risk for study participants is not considered higher compared with patients who do not participate in the study. Ethics and approvals: The study will be performed in accordance with the ethical principles in the Helsinki Declaration. For approvals please see "Oversight". ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04128904
Study type Interventional
Source Copenhagen University Hospital, Hvidovre
Contact
Status Active, not recruiting
Phase N/A
Start date November 29, 2019
Completion date December 2024

See also
  Status Clinical Trial Phase
Completed NCT03607409 - Role of Inhibin A as Biomarker for Ovarian Response for IVF Treatment
Recruiting NCT02312076 - GnRHa for Luteal Phase Support in Long GnRHa Protocol Cycles Phase 4
Terminated NCT02161861 - Improvement of IVF Fertilization Rates, by the Cyclic Tripeptide FEE - Prospective Randomized Study N/A
Completed NCT03287479 - Comparison of a Semi-automated Closed Vitrification System (Gavi®) With a Manual Open Vitrification Sytem (Cryotop®) N/A
Terminated NCT03522350 - Randomized Trial Comparing EmbryoScope With EmbryoScope+. N/A
Completed NCT04496284 - Embryo Transfer Outcomes After Vitrification With Slush Nitrogen Compared to Liquid Nitrogen N/A
Completed NCT03623659 - pArtiaL zonA pelluciDa Removal by assisteD hatchINg of Blastocysts N/A
Completed NCT03895099 - New Ovarian Stimulation With Random Start, Use of Progestin Protocol for Oocyte Donors Phase 3
Active, not recruiting NCT04142112 - Randomized, Standard-Controlled, Study to Evaluate the Ohana IVF Sperm Preparation Kit, SPeRtility IVF Next Generation N/A
Completed NCT03152643 - Cumulative Live Birth Rates After Cleavage-stage Versus Blastocyst-stage Embryo Transfer N/A
Recruiting NCT03683771 - Assessment of Endometrial Pattern and Sub-endometrial Vascularity in ICSI Outcome
Recruiting NCT03161119 - Comparing Two Different Embryo Transfer Catheters N/A
Completed NCT04108039 - Micronized Progesterone vs Gonadotropin-releasing Hormone (GnRH) Antagonist in Freeze-all IVF Cycles. N/A
Completed NCT03678610 - Handling Medium for ICSI With Ionomycin and Latrunculin A N/A
Completed NCT03678558 - Oocyte Vitrification Aided With Cytochalasin B N/A
Completed NCT03678818 - Supplementing Intracytoplasmic Sperm Injection Handling Medium With Latrunculin A (ICSI-LA) N/A
Completed NCT03678584 - Supplementing Intracytoplasmic Sperm Injection Handling Medium With Chaetoglobosin A ( ICSI-CA) N/A
Completed NCT03677492 - Supplementing Intracytoplasmic Sperm Injection Handling Medium With Cytochalasin D ( ICSI-CD) N/A
Completed NCT03678571 - Oocyte Vitrification Aided With Latrunculin A N/A
Completed NCT03678597 - Supplementing Intracytoplasmic Sperm Injection Handling Medium With Latrunculin B ( ICSI-LB) N/A