Clinical Trials Logo

Immunoproliferative Disorders clinical trials

View clinical trials related to Immunoproliferative Disorders.

Filter by:

NCT ID: NCT06271252 Not yet recruiting - Clinical trials for Cardiovascular Diseases

A Study to Evaluate the Safety, PK/PD of (OriCAR-017) in Subjects With RR/MM - RIGEL Study

Start date: April 15, 2024
Phase: Phase 1
Study type: Interventional

The is a first clinical study for Oricell Therapeutics Inc. in the United States to evaluate the safety, PK, PD and preliminary efficacy of our anti-GPRC5D cell product (OriCAR-017) in subjects with relapsed/refractory multiple myeloma. RIGEL Study

NCT ID: NCT05431179 Withdrawn - Lymphoma Clinical Trials

A Study of Zilovertamab and Ibrutinib in Patients With Relapsed or Refractory Mantle Cell Lymphoma

Start date: March 2023
Phase: Phase 3
Study type: Interventional

This is a Phase 3 study to investigate the safety and efficacy of the investigational drug, zilovertamab, when given in combination with ibrutinib in patients with relapsed/refractory (R/R) mantle cell lymphoma (MCL).

NCT ID: NCT04309084 Active, not recruiting - Clinical trials for Cardiovascular Diseases

Natural Killer Cell (CYNK-001) Infusions in Adults With Multiple Myeloma

Start date: May 12, 2020
Phase: Phase 1
Study type: Interventional

This study will find the maximum tolerated dose (MTD) of CYNK-001 which contain NK cells derived from human placental CD34+ cells and culture-expanded. CYNK-001 cells will be given post Autologous Stem Cell Transplant (ASCT). The safety of this treatment will be evaluated, and researchers will want to learn if NK cells will help in treating Multiple Myeloma.

NCT ID: NCT03744676 Completed - Lymphoma Clinical Trials

A Safety Trial of Lisocabtagene Maraleucel (JCAR017) for Relapsed and Refractory (R/R) B-cell Non-Hodgkin Lymphoma (NHL) in the Outpatient Setting (TRANSCEND-OUTREACH-007)

Start date: November 29, 2018
Phase: Phase 2
Study type: Interventional

This is an open-label, multicenter, Phase 2 study to determine the safety, PK, and efficacy of lisocabtagene maraleucel (JCAR017) in subjects who have relapsed from, or are refractory to, two lines of immunochemotherapy for aggressive B-cell non-Hodgkin lymphoma (NHL) in the outpatient setting. Subjects will receive treatment with JCAR017 and will be followed for up to 2 years.

NCT ID: NCT03696784 Recruiting - Lymphoma Clinical Trials

Anti-CD19 CAR-T Cells With Inducible Caspase 9 Safety Switch for B-cell Lymphoma

Start date: March 12, 2019
Phase: Phase 1
Study type: Interventional

This research study combines 2 different ways of fighting disease: antibodies and T cells. Both antibodies and T cells have been used to treat patients with cancers, and both have shown promise, but neither alone has been sufficient to cure most patients. This study combines both T cells and antibodies to create a more effective treatment. The treatment being researched is called autologous T lymphocyte chimeric antigen receptor cells targeted against the CD19 antigen (ATLCAR.CD19) administration. Prior studies have shown that a new gene can be put into T cells and will increase their ability to recognize and kill cancer cells. The new gene that is put in the T cells in this study makes a piece of an antibody called anti-CD19. This antibody sticks to leukemia cells because they have a substance on the outside of the cells called CD19. For this study, the anti-CD19 antibody has been changed so that instead of floating free in the blood part of it is now joined to the T cells. When an antibody is joined to a T cell in this way it is called a chimeric receptor. These CD19 chimeric (combination) receptor-activated T cells seem to kill some of the tumor, but they do not last very long in the body and so their chances of fighting the cancer are unknown. Preliminary results have shown that subjects receiving this treatment have experienced unwanted side effects including cytokine release syndrome and neurotoxicity. In this study, to help reduce cytokine release syndrome and/or neurotoxicity symptoms, the ATLCAR.CD19 cells have a safety switch that, when active, can cause the cells to become dormant. These modified ATLCAR.CD19 cells with the safety switch are referred to as iC9-CAR19 cells. If the subject experiences moderate to severe cytokine release syndrome and or neurotoxicity as a result of being given iC9-CAR19 cells, the subject can be given a dose of a second study drug, AP1903, if standard interventions fail to alleviate the symptoms of cytokine release syndrome and/or neurotoxicity. AP1903 activates the iC9-CAR19 safety switch, reducing the number of the iC9-CAR19 cells in the blood. The ultimate goal is to determine what dose of AP1903 can be given that reduces the severity of the cytokine release syndrome and/or neurotoxicity, but still allows the remaining iC9-CAR19 cells to effectively fight the lymphoma. The primary purpose of this study is to determine whether receiving iC9-CAR19 cells is safe and tolerable in patients with relapsed/refractory B-cell lymphoma, primary central nervous system lymphoma and chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL).

NCT ID: NCT03602157 Recruiting - Lymphoma Clinical Trials

Study of CAR-T Cells Expressing CD30 and CCR4 for r/r CD30+ HL and CTCL

Start date: December 12, 2018
Phase: Phase 1
Study type: Interventional

The body has different ways of fighting infection and disease. No single way is perfect for fighting cancer. This research study combines two different ways of fighting disease: antibodies and T cells. Antibodies are proteins that protect the body from disease caused by bacteria or toxic substances. Antibodies work by binding bacteria or substances, which stops them from growing and causing bad effects. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including tumor cells or cells that are infected with bacteria or viruses. Both antibodies and T cells have been used to treat patients with cancers. They both have shown promise, but neither alone has been sufficient to treat cancer. This study will combine both T cells and antibodies in order to create a more effective treatment called Autologous T Lymphocyte Chimeric Antigen Receptor cells targeted against the CD30 antigen (ATLCAR.CD30). Another treatment being tested includes the Autologous T Lymphocyte Chimeric Antigen Receptor cells targeted against the CD30 antigen with CCR4 (ATLCAR.CD30.CCR4) to help the cells move to regions in the patient's body where the cancer is present. Participants in this study will receive either ATLCAR.CD30.CCR4 cells alone or will receive ATLCAR.CD30.CCR4 cells combined with ATLCAR.CD30 cells. Previous studies have shown that a new gene can be put into T cells that will increase their ability to recognize and kill cancer cells. The new gene that is put in the T cells in this study makes an antibody called anti-CD30. This antibody sticks to lymphoma cells because of a substance on the outside of the cells called CD30. Anti-CD30 antibodies have been used to treat people with lymphoma but have not been strong enough to cure most patients. For this study, the anti-CD30 antibody has been changed so instead of floating free in the blood it is now joined to the T cells. When an antibody is joined to a T cell in this way it is called a chimeric receptor. These CD30 chimeric (combination) receptor-activated T cells (ATLCAR.CD30) can kill some of the tumor, but they do not last very long in the body and so their chances of fighting the cancer are unknown. Researchers are working to identify ways to improve the ability of ATLCAR.CD30 to destroy tumor cells. T cells naturally produce a protein called CCR4 which functions as a navigation system directing T cells toward tumor cells specifically. In this study, researchers will also genetically modify ATLCAR.CD30 cells to produce more CCR4 proteins and they will be called ATLCAR.CD30.CCR4. The study team believes that the ATLCAR.CD30.CCR4 cells will be guided directly toward the tumor cells based on their navigation system. In addition, the study team believes the majority of ATLCAR.CD30 cells will also be guided directly toward tumor cells when given together with ATLCAR.CD30.CCR4, increasing their anti-cancer fighting ability. This is the first time ATLCAR>CD30.CCR4 cells or combination of ATLCAR.CD30.CCR4 and ATLCAR.CD30 cells are used to treat lymphoma. The purpose of this study to determine the following: - What is the safe dose of ATLCAR.CD30.CCR4 cells to give to patients - What is the safe dose of the combination of ATLCAR.CD30 and ATLCAR.CD30.CCR4 cells to give to patients

NCT ID: NCT03594162 No longer available - Clinical trials for Acute Lymphoblastic Leukemia

Compassionate Use of CAR T Cells Targeting the CD19 Antigen and Containing the Inducible Caspase 9 Safety Switch

Start date: n/a
Phase:
Study type: Expanded Access

This protocol for compassionate use combines 2 different ways of fighting disease: antibodies and T cells. Both antibodies and T cells have been used to treat patients with cancers, and both have shown promise, but neither alone has been sufficient to cure most patients. This protocol combines both T cells and antibodies to create a more effective treatment. The investigational treatment is called autologous T lymphocyte chimeric antigen receptor cells targeted against the CD19 antigen (ATLCAR.CD19) administration. Prior studies have shown that a new gene can be put into T cells and will increase their ability to recognize and kill cancer cells. The new gene that is put in the T cells in this study makes a piece of an antibody called anti-CD19. This antibody sticks to leukemia cells because they have a substance on the outside of the cells called CD19. For this protocol, the anti-CD19 antibody has been changed so that instead of floating free in the blood part of it is now joined to the T cells. When an antibody is joined to a T cell in this way it is called a chimeric receptor. These CD19 chimeric (combination) receptor-activated T cells seem to kill some of the tumor, but they do not last very long in the body and so their chances of fighting the cancer are unknown. Preliminary results have shown that many subjects receiving this treatment have experienced unwanted side effects including cytokine release syndrome. In this protocol, to help reduce cytokine release syndrome symptoms, the ATLCAR.CD19 cells have a safety switch that when active, can cause the cells to become dormant. These modified ATLCAR.CD19 cells with the safety switch are referred to as iC9-CAR19 cells. If the patient experiences moderate to severe cytokine release syndrome as a result of being given iC9-CAR19 cells, the patient can be given a dose of a second study drug, AP1903, if standard interventions fail to alleviate the symptoms of cytokine release syndrome. AP1903 activates the iC9-CAR19 safety switch, reducing the number of the iC9-CAR19 cells in the blood. The primary purpose of this protocol is to treat a single patient with a second dose of iC9-CAR19 T cells.

NCT ID: NCT03373019 Recruiting - Neoplasms Clinical Trials

Chidamide Combined With R-GDP in Treating Patients With Relapsed or Refractory Diffuse Large B-cell Lymphoma (DLBCL)

Start date: December 21, 2017
Phase: Phase 2
Study type: Interventional

The goal of this clinical trial is to evaluate therapeutic efficacy of Chidamide combined with R-GDP (rituximab/gemcitabine/dexamethasone/cisplatin)in treating Patients with relapsed or refractory Diffuse Large B-cell Lymphoma (DLBCL) not suitable for transplantation.

NCT ID: NCT03016377 Recruiting - Clinical trials for Acute Lymphoblastic Leukemia

Administration of Autologous CAR-T CD19 Antigen With Inducible Safety Switch in Patients With Relapsed/Refractory ALL

Start date: March 22, 2012
Phase: Phase 1/Phase 2
Study type: Interventional

The body has different ways of fighting infection and disease. No single way is effective at fighting cancer. This research study combines two different ways of fighting disease: antibodies and T cells. Antibodies are proteins that protect the body from disease caused by bacteria or toxic substances. Antibodies work by binding those bacteria or substances, which stops them from growing and causing bad effects. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including tumor cells or cells that are infected. Both antibodies and T cells have been used to treat patients with cancers. They both have shown promise, but neither alone has been sufficient to cure most patients. This study combines both T cells and antibodies to try to create a more effective treatment. This investigational treatment is called autologous T lymphocyte chimeric antigen receptor cells targeted against the CD19 antigen (ATLCAR.CD19) administration. In previous studies, it has been shown that a new gene can be put into T cells that will increase their ability to recognize and kill cancer cells. A gene is a unit of DNA. Genes make up the chemical structure carrying the genetic information that may determine human characteristics (i.e., eye color, height and sex). The new gene that is put in the T cells makes a piece of an antibody called anti-CD19. This antibody can flow through the blood and can find and stick to leukemia cells because these leukemia cells have a substance on their surface called CD19. Anti-CD19 antibodies have been used to treat people with leukemia but have not been strong enough to cure most patients. For this study, the anti-CD19 antibody has been changed so that instead of floating free in the blood a piece of it is now joined to the surface of the T cells. Only the part of the antibody that sticks to the leukemia cells is attached to the T cells instead of the entire antibody. When an antibody is joined to a T cell in this way it is called a chimeric receptor. These CD19 chimeric (combination) receptor-activated T cells kill some of the tumor, but they do not last very long in the body and so their chances of fighting the cancer are unknown. Preliminary results of giving ATLCAR.CD19 cells to leukemia patients have been encouraging; however, many subjects receiving this treatment have experienced unwanted side effects including neurotoxicity and/or cytokine release syndrome (also referred to as cytokine storm or an infusion reaction). Cytokines are small proteins that interreact as e signals to other cells and are the way cells talk to one another. During cytokine release syndrome, too many cytokines are released and too many cells in your body react to their release. Symptoms resulting from cytokine release syndrome vary from flu-like symptoms to more severe side effects such as cardiac arrest, multi-system organ failure or death. We predict that about 50% of patients on this study will experience mild to severe cytokine release syndrome. To help reduce cytokine release syndrome symptoms in future patients, a safety switch has been added to the ATLCAR.CD19 cells that can cause the cells to become dormant or "go to sleep". The safety switch is called inducible caspase 9 or iC9. The modified ATLCAR.CD19 cells with the safety switch are referred to as iC9-CAR19 cells. The purpose of this study is to determine whether receiving the iC9-CAR19 cells is safe and tolerable (there are not too many unwanted effects). Researchers has previously tested different doses of the iC9-CAR19. An effective dose that had the least number of unwanted side effects in patients was identified. It was planned to test this dose in more patients to learn more about its effect in the body. This type of research study is called a dose expansion study. It will allow the investigators to collect more information about the effect of this dose in treating of certain type of cancer.

NCT ID: NCT02690545 Recruiting - Lymphoma Clinical Trials

Study of CD30 CAR for Relapsed/Refractory CD30+ HL and CD30+ NHL

Start date: August 26, 2016
Phase: Phase 1/Phase 2
Study type: Interventional

The body has different ways of fighting infection and disease. No single way seems perfect for fighting cancer. This research study combines two different ways of fighting disease: antibodies and T cells. Antibodies are proteins that protect the body from disease caused by bacteria or toxic substances. Antibodies work by binding those bacteria or substances, which stops them from growing and causing bad effects. T cells, also called T lymphocytes, are special infection-fighting blood cells that can kill other cells, including tumor cells or cells that are infected. Both antibodies and T cells have been used to treat patients with cancers. They both have shown promise, but neither alone has been sufficient to cure most patients. This study is designed to combine both T cells and antibodies to create a more effective treatment called autologous T lymphocyte chimeric antigen receptor cells targeted against the CD30 antigen (ATLCAR.CD30) administration. In previous studies, it has been shown that a new gene can be put into T cells that will increase their ability to recognize and kill cancer cells. The new gene that is put in the T cells in this study makes an antibody called anti-CD30. This antibody sticks to lymphoma cells because of a substance on the outside of the cells called CD30. Anti-CD30 antibodies have been used to treat people with lymphoma, but have not been strong enough to cure most patients. For this study, the anti-CD30 antibody has been changed so that instead of floating free in the blood it is now joined to the T cells. When an antibody is joined to a T cell in this way it is called a chimeric receptor. These CD30 chimeric (combination) receptor-activated T cells seem to kill some of the tumor, but they do not last very long in the body and so their chances of fighting the cancer are unknown. The purpose of this research study is to establish a safe dose of ATLCAR.CD30 cells to infuse after lymphodepleting chemotherapy and to estimate the number patients whose cancer does not progress for two years after ATLCAR.CD30 administration. This study will also look at other effects of ATLCAR.CD30 cells, including their effect on the patient's cancer.