Hypertension Clinical Trial
— PREDICT-RDNOfficial title:
The Predictive Role of Proteomics in Blood Pressure Response of Hypertensive Patients Undergoing Renal Denervation.
Renal sympathetic nervous activity plays a crucial role in the development and maintenance of hypertension (HTN). Renal denervation (RDN) is a minimally invasive catheter-based treatment using mainly radiofrequency or ultrasound energy to selectively disrupt the sympathetic renal nerves. RDN has experienced rises and falls during its development as a treatment option for HTN in humans. Latest well-designed sham-controlled randomised trials with improved methodology confirmed significant blood pressure (BP) reduction in both office and 24-hour ambulatory BP. Although the safety of RDN procedures seems favourable thus, the rate of BP response to the procedure is variable, with response rates reported in the range between 60% and 70%. It is of great importance to identify biomarkers able to reliably predict subjects who would benefit from this treatment, in order to achieve better therapeutic results. Proteomics is the study of the full complement of proteins produced or modified by a biological system (cell, tissue, organ, biological fluid, or organism). Proteomic analysis is used in different research settings to understand pathogenicity mechanisms and emerge biomarkers with predictive role in diagnosis and treatment of different diseases. The main purpose of this study is to investigate the potential predictive role of the urine proteomics in BP response of patients undergoing RDN. This hypothesis may lead to the emergence of biomarkers in urine of hypertensive patients, in order to optimally select those who will undergo RDN. This is a prospective observational study enrolling hypertensive patients, aged 18-80 years who will proceed in RDN as participants of randomized control trials. During baseline evaluation HTN diagnosis will be confirmed by office blood pressure measurement (OBPM) and ambulatory blood pressure measurement (ABPM), while urine sample will be collected before RDN for proteomic analysis. The participants will have a follow-up visit in 3 months since baseline procedure for office blood pressure (OBP) and ambulatory blood pressure (ABP) measurements. A cut off value of 5mmHg reduction in ABP or/and 10mmHg reduction in office blood pressure (OBP) on 3 months visit will be set to categorize the patients to responders or non-responders after RDN. The qualitative and quantitative differences of proteins between the two groups of patients will be investigated, based on proteomic analysis results, in order to determine specific urine proteins with predictive role in blood pressure response. The study results are expected to determine the predictive role of urine proteomics in optimal selection of hypertensive patients who will undergo renal denervation.
Status | Recruiting |
Enrollment | 100 |
Est. completion date | September 1, 2025 |
Est. primary completion date | September 1, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years to 80 Years |
Eligibility | Inclusion Criteria: - All treated patients have to be on standard antihypertensive regimens for at least 8 weeks - Age 18-80 years - Office systolic blood pressure =140 mmHg and - Ambulatory systolic blood pressure =130 mmHg Exclusion Criteria: - eGFR <45mL/min/1.73m2 - Renal artery abnormalities - Type I diabetes mellitus - Secondary hypertension - Pregnant or breastfeeding women - Psychiatric or neurological disease which does not allow adequate co-operation - Active cancer on treatment |
Country | Name | City | State |
---|---|---|---|
Greece | First Cardiology Clinic, Hippokration General Hospital, National and Kapodistrian University of Athens | Athens |
Lead Sponsor | Collaborator |
---|---|
Hippocration General Hospital | Biomedical Research Foundation, Academy of Athens, National and Kapodistrian University of Athens |
Greece,
Arnett DK, Claas SA. Omics of Blood Pressure and Hypertension. Circ Res. 2018 May 11;122(10):1409-1419. doi: 10.1161/CIRCRESAHA.118.311342. — View Citation
Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: Technologies and Their Applications. J Chromatogr Sci. 2017 Feb;55(2):182-196. doi: 10.1093/chromsci/bmw167. Epub 2016 Oct 18. — View Citation
Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, Basile J, Kirtane AJ, Wang Y, Lobo MD, Saxena M, Feyz L, Rader F, Lurz P, Sayer J, Sapoval M, Levy T, Sanghvi K, Abraham J, Sharp ASP, Fisher NDL, Bloch MJ, Reeve-Stoffer H, Coleman L, Mullin C, Mauri L; RADIANCE-HTN Investigators. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018 Jun 9;391(10137):2335-2345. doi: 10.1016/S0140-6736(18)31082-1. Epub 2018 May 23. Erratum In: Lancet. 2018 Sep 8;392(10150):820. — View Citation
Bakris GL, Townsend RR, Liu M, Cohen SA, D'Agostino R, Flack JM, Kandzari DE, Katzen BT, Leon MB, Mauri L, Negoita M, O'Neill WW, Oparil S, Rocha-Singh K, Bhatt DL; SYMPLICITY HTN-3 Investigators. Impact of renal denervation on 24-hour ambulatory blood pressure: results from SYMPLICITY HTN-3. J Am Coll Cardiol. 2014 Sep 16;64(11):1071-8. doi: 10.1016/j.jacc.2014.05.012. Epub 2014 May 20. — View Citation
Bhatt DL, Kandzari DE, O'Neill WW, D'Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL; SYMPLICITY HTN-3 Investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014 Apr 10;370(15):1393-401. doi: 10.1056/NEJMoa1402670. Epub 2014 Mar 29. — View Citation
Bohm M, Kario K, Kandzari DE, Mahfoud F, Weber MA, Schmieder RE, Tsioufis K, Pocock S, Konstantinidis D, Choi JW, East C, Lee DP, Ma A, Ewen S, Cohen DL, Wilensky R, Devireddy CM, Lea J, Schmid A, Weil J, Agdirlioglu T, Reedus D, Jefferson BK, Reyes D, D'Souza R, Sharp ASP, Sharif F, Fahy M, DeBruin V, Cohen SA, Brar S, Townsend RR; SPYRAL HTN-OFF MED Pivotal Investigators. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet. 2020 May 2;395(10234):1444-1451. doi: 10.1016/S0140-6736(20)30554-7. Epub 2020 Mar 29. — View Citation
Briasoulis A, Bakris G. Renal Denervation After SYMPLICITY HTN-3: Where Do We Go? Can J Cardiol. 2015 May;31(5):642-8. doi: 10.1016/j.cjca.2014.12.004. Epub 2014 Dec 11. — View Citation
Carty DM, Schiffer E, Delles C. Proteomics in hypertension. J Hum Hypertens. 2013 Apr;27(4):211-6. doi: 10.1038/jhh.2012.30. Epub 2012 Aug 9. — View Citation
Fengler K, Rommel KP, Blazek S, Besler C, Hartung P, von Roeder M, Petzold M, Winkler S, Hollriegel R, Desch S, Thiele H, Lurz P. A Three-Arm Randomized Trial of Different Renal Denervation Devices and Techniques in Patients With Resistant Hypertension (RADIOSOUND-HTN). Circulation. 2019 Jan 29;139(5):590-600. doi: 10.1161/CIRCULATIONAHA.118.037654. — View Citation
Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens. 2016 May;10(5):457-66. doi: 10.1016/j.jash.2016.02.015. Epub 2016 Mar 4. — View Citation
Kandzari DE, Bohm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, Tsioufis K, Tousoulis D, Choi JW, East C, Brar S, Cohen SA, Fahy M, Pilcher G, Kario K; SPYRAL HTN-ON MED Trial Investigators. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018 Jun 9;391(10137):2346-2355. doi: 10.1016/S0140-6736(18)30951-6. Epub 2018 May 23. — View Citation
Kitt J, Fox R, Tucker KL, McManus RJ. New Approaches in Hypertension Management: a Review of Current and Developing Technologies and Their Potential Impact on Hypertension Care. Curr Hypertens Rep. 2019 Apr 25;21(6):44. doi: 10.1007/s11906-019-0949-4. — View Citation
Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009 Apr 11;373(9671):1275-81. doi: 10.1016/S0140-6736(09)60566-3. Epub 2009 Mar 28. — View Citation
Laffin LJ, Bakris GL. Hypertension and new treatment approaches targeting the sympathetic nervous system. Curr Opin Pharmacol. 2015 Apr;21:20-4. doi: 10.1016/j.coph.2014.12.006. Epub 2014 Dec 23. — View Citation
Lam MP, Ping P, Murphy E. Proteomics Research in Cardiovascular Medicine and Biomarker Discovery. J Am Coll Cardiol. 2016 Dec 27;68(25):2819-2830. doi: 10.1016/j.jacc.2016.10.031. — View Citation
Lauder L, Azizi M, Kirtane AJ, Bohm M, Mahfoud F. Device-based therapies for arterial hypertension. Nat Rev Cardiol. 2020 Oct;17(10):614-628. doi: 10.1038/s41569-020-0364-1. Epub 2020 Apr 14. — View Citation
Liang B, Zhao YX, Gu N. Renal Denervation for Resistant Hypertension: Where Do We Stand? Curr Hypertens Rep. 2020 Sep 3;22(10):83. doi: 10.1007/s11906-020-01094-6. — View Citation
Lindsey ML, Mayr M, Gomes AV, Delles C, Arrell DK, Murphy AM, Lange RA, Costello CE, Jin YF, Laskowitz DT, Sam F, Terzic A, Van Eyk J, Srinivas PR; American Heart Association Council on Functional Genomics and Translational Biology, Council on Cardiovascular Disease in the Young, Council on Clinical Cardiology, Council on Cardiovascular and Stroke Nursing, Council on Hypertension, and Stroke Council. Transformative Impact of Proteomics on Cardiovascular Health and Disease: A Scientific Statement From the American Heart Association. Circulation. 2015 Sep 1;132(9):852-72. doi: 10.1161/CIR.0000000000000226. Epub 2015 Jul 20. — View Citation
Loscalzo J. Proteomics in cardiovascular biology and medicine. Circulation. 2003 Jul 29;108(4):380-3. doi: 10.1161/01.CIR.0000079867.56212.17. No abstract available. — View Citation
Mahfoud F, Azizi M, Ewen S, Pathak A, Ukena C, Blankestijn PJ, Bohm M, Burnier M, Chatellier G, Durand Zaleski I, Grassi G, Joner M, Kandzari DE, Kirtane A, Kjeldsen SE, Lobo MD, Luscher TF, McEvoy JW, Parati G, Rossignol P, Ruilope L, Schlaich MP, Shahzad A, Sharif F, Sharp ASP, Sievert H, Volpe M, Weber MA, Schmieder RE, Tsioufis C, Wijns W. Proceedings from the 3rd European Clinical Consensus Conference for clinical trials in device-based hypertension therapies. Eur Heart J. 2020 Apr 21;41(16):1588-1599. doi: 10.1093/eurheartj/ehaa121. No abstract available. Erratum In: Eur Heart J. 2020 Dec 14;41(47):4520. — View Citation
Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014 May 23;114(11):1804-14. doi: 10.1161/CIRCRESAHA.114.302524. — View Citation
Manolis AJ, Poulimenos LE, Kallistratos MS, Gavras I, Gavras H. Sympathetic overactivity in hypertension and cardiovascular disease. Curr Vasc Pharmacol. 2014 Jan;12(1):4-15. doi: 10.2174/15701611113119990140. — View Citation
Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020 Apr;16(4):223-237. doi: 10.1038/s41581-019-0244-2. Epub 2020 Feb 5. — View Citation
Ng FL, Saxena M, Mahfoud F, Pathak A, Lobo MD. Device-based Therapy for Hypertension. Curr Hypertens Rep. 2016 Aug;18(8):61. doi: 10.1007/s11906-016-0670-5. — View Citation
Olsen LK, Kamper AL, Svendsen JH, Feldt-Rasmussen B. Renal denervation. Eur J Intern Med. 2015 Mar;26(2):95-105. doi: 10.1016/j.ejim.2015.01.009. Epub 2015 Feb 10. — View Citation
Sardar P, Bhatt DL, Kirtane AJ, Kennedy KF, Chatterjee S, Giri J, Soukas PA, White WB, Parikh SA, Aronow HD. Sham-Controlled Randomized Trials of Catheter-Based Renal Denervation in Patients With Hypertension. J Am Coll Cardiol. 2019 Apr 9;73(13):1633-1642. doi: 10.1016/j.jacc.2018.12.082. — View Citation
Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009 Aug 27;361(9):932-4. doi: 10.1056/NEJMc0904179. No abstract available. — View Citation
SMITHWICK RH. Hypertensive vascular disease; results of and indications for splanchnicectomy. J Chronic Dis. 1955 May;1(5):477-96. doi: 10.1016/0021-9681(55)90061-8. No abstract available. — View Citation
Symplicity HTN-2 Investigators; Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010 Dec 4;376(9756):1903-9. doi: 10.1016/S0140-6736(10)62039-9. Epub 2010 Nov 17. — View Citation
Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, Ewen S, Tsioufis K, Tousoulis D, Sharp ASP, Watkinson AF, Schmieder RE, Schmid A, Choi JW, East C, Walton A, Hopper I, Cohen DL, Wilensky R, Lee DP, Ma A, Devireddy CM, Lea JP, Lurz PC, Fengler K, Davies J, Chapman N, Cohen SA, DeBruin V, Fahy M, Jones DE, Rothman M, Bohm M; SPYRAL HTN-OFF MED trial investigators*. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017 Nov 11;390(10108):2160-2170. doi: 10.1016/S0140-6736(17)32281-X. Epub 2017 Aug 28. — View Citation
Tsioufis C, Kordalis A, Flessas D, Anastasopoulos I, Tsiachris D, Papademetriou V, Stefanadis C. Pathophysiology of resistant hypertension: the role of sympathetic nervous system. Int J Hypertens. 2011 Jan 20;2011:642416. doi: 10.4061/2011/642416. — View Citation
Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018 Sep 1;39(33):3021-3104. doi: 10.1093/eurheartj/ehy339. No abstract available. Erratum In: Eur Heart J. 2019 Feb 1;40(5):475. — View Citation
Zhao M, Li M, Yang Y, Guo Z, Sun Y, Shao C, Li M, Sun W, Gao Y. A comprehensive analysis and annotation of human normal urinary proteome. Sci Rep. 2017 Jun 8;7(1):3024. doi: 10.1038/s41598-017-03226-6. — View Citation
* Note: There are 33 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Identified proteins' variation rate | In this research protocol the investigators studying urinary proteome changes with potential capacity to predict BP response to RDN procedure. Among the identified proteins in baseline urine, the investigators aim to determine significant proteins' variations between responders and non-responders of BP. Individual proteins will be quantified (µg/g creatinine) by liquid chromatography-mass spectrometry; ELISA and target mass spectrometry analysis will be performed for confirmation. Patients will be classified in responders or non-responders in terms of BP control. | 3 months follow up |
Status | Clinical Trial | Phase | |
---|---|---|---|
Terminated |
NCT04591808 -
Efficacy and Safety of Atorvastatin + Perindopril Fixed-Dose Combination S05167 in Adult Patients With Arterial Hypertension and Dyslipidemia
|
Phase 3 | |
Recruiting |
NCT04515303 -
Digital Intervention Participation in DASH
|
||
Completed |
NCT05433233 -
Effects of Lifestyle Walking on Blood Pressure in Older Adults With Hypertension
|
N/A | |
Completed |
NCT05491642 -
A Study in Male and Female Participants (After Menopause) With Mild to Moderate High Blood Pressure to Learn How Safe the Study Treatment BAY3283142 is, How it Affects the Body and How it Moves Into, Through and Out of the Body After Taking Single and Multiple Doses
|
Phase 1 | |
Completed |
NCT03093532 -
A Hypertension Emergency Department Intervention Aimed at Decreasing Disparities
|
N/A | |
Completed |
NCT04507867 -
Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III
|
N/A | |
Completed |
NCT05529147 -
The Effects of Medication Induced Blood Pressure Reduction on Cerebral Hemodynamics in Hypertensive Frail Elderly
|
||
Recruiting |
NCT06363097 -
Urinary Uromodulin, Dietary Sodium Intake and Ambulatory Blood Pressure in Patients With Chronic Kidney Disease
|
||
Recruiting |
NCT05976230 -
Special Drug Use Surveillance of Entresto Tablets (Hypertension)
|
||
Completed |
NCT06008015 -
A Study to Evaluate the Pharmacokinetics and the Safety After Administration of "BR1015" and Co-administration of "BR1015-1" and "BR1015-2" Under Fed Conditions in Healthy Volunteers
|
Phase 1 | |
Completed |
NCT05387174 -
Nursing Intervention in Two Risk Factors of the Metabolic Syndrome and Quality of Life in the Climacteric Period
|
N/A | |
Completed |
NCT04082585 -
Total Health Improvement Program Research Project
|
||
Recruiting |
NCT05121337 -
Groceries for Black Residents of Boston to Stop Hypertension Among Adults Without Treated Hypertension
|
N/A | |
Withdrawn |
NCT04922424 -
Mechanisms and Interventions to Address Cardiovascular Risk of Gender-affirming Hormone Therapy in Trans Men
|
Phase 1 | |
Active, not recruiting |
NCT05062161 -
Sleep Duration and Blood Pressure During Sleep
|
N/A | |
Not yet recruiting |
NCT05038774 -
Educational Intervention for Hypertension Management
|
N/A | |
Completed |
NCT05087290 -
LOnger-term Effects of COVID-19 INfection on Blood Vessels And Blood pRessure (LOCHINVAR)
|
||
Completed |
NCT05621694 -
Exploring Oxytocin Response to Meditative Movement
|
N/A | |
Completed |
NCT05688917 -
Green Coffee Effect on Metabolic Syndrome
|
N/A | |
Recruiting |
NCT05575453 -
OPTIMA-BP: Empowering PaTients in MAnaging Blood Pressure
|
N/A |