Clinical Trials Logo

Clinical Trial Details — Status: Withdrawn

Administrative data

NCT number NCT00960921
Other study ID # Oxford-Kyrgyzstan-2009
Secondary ID
Status Withdrawn
Phase Phase 2
First received August 17, 2009
Last updated May 12, 2017

Study information

Verified date May 2017
Source University of Oxford
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Body iron levels may be important in determining how the blood pressure in the lungs changes in response to low oxygen levels. At high altitude, where oxygen levels are low, some patients develop elevated lung blood pressure. The investigators hypothesize that, in high altitude residents with elevated lung blood pressure, iron supplementation will cause a reduction in lung blood pressure.


Description:

Pulmonary hypertensive disorders frequently complicate hypoxic lung disease and worsen patient survival.

Hypoxia-induced pulmonary hypertension is also a major cause of morbidity at high altitude. Hypoxia causes pulmonary hypertension through hypoxic pulmonary vasoconstriction and vascular remodelling. These processes are thought to be regulated at least in part by the hypoxia-inducible factor (HIF) family of transcription factors, which coordinate intracellular responses to hypoxia throughout the body.

HIF is regulated through a cellular degradation process that requires iron as an obligate cofactor. In cultured cells HIF degradation is inhibited by reduced iron availability (by chelation with desferrioxamine) and potentiated by iron supplementation. In humans, laboratory experiments lasting eight hours have shown that acute iron supplementation blunts the pulmonary vascular response to hypoxia, while acute iron chelation with desferrioxamine enhances the response.

These findings suggest that iron may also affect the pulmonary vascular response to hypoxia over longer time periods. The purpose of this study, which will take place at high altitude in Kyrgyzstan, is to investigate whether iron supplementation can reduce pulmonary artery pressure in patients with established high altitude pulmonary hypertension.


Recruitment information / eligibility

Status Withdrawn
Enrollment 0
Est. completion date
Est. primary completion date
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria:

- High altitude natives, currently resident at high altitude

- Pulmonary hypertension (mean pulmonary artery pressure > 25 mmHg)

- Pulmonary artery systolic pressure measurable using Doppler echocardiography

Exclusion Criteria:

- Clinical evidence or history of major co-morbidity

- Recent changes to relevant medications, or taking iron/vitamin supplements

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Iron sucrose
An intravenous infusion of 100 mg of iron is administered on days 0, 4, 8, 12, 16 and 20 of the study, giving a total of six iron infusions for each participant in the iron group over the course of the 28-day study period.
Normal saline
An intravenous infusion of 100 ml of normal (0.9 %) saline is administered on days 0, 4, 8, 12, 16 and 20 of the study, giving a total of six saline (placebo) infusions for each participant in the saline group over the course of the 28-day study period.

Locations

Country Name City State
Kyrgyzstan Institute of Molecular Biology and Medicine Bishkek

Sponsors (2)

Lead Sponsor Collaborator
University of Oxford National Center of Cardiology and Internal Medicine, Kyrgyzstan

Country where clinical trial is conducted

Kyrgyzstan, 

Outcome

Type Measure Description Time frame Safety issue
Primary Change in pulmonary artery systolic pressure 28 days
See also
  Status Clinical Trial Phase
Completed NCT04095286 - Relative Bioavailability Study of Marketed and Lower Dose Ambrisentan in Healthy Adult Participants Phase 1
Enrolling by invitation NCT03683186 - A Study Evaluating the Long-Term Efficacy and Safety of Ralinepag in Subjects With PAH Via an Open-Label Extension Phase 3
Completed NCT02191137 - Measuring Outcomes In Patients With Pulmonary Arterial Hypertension Not on Active Treatment (MOTION) Phase 4
Completed NCT01959828 - Confirmatory Study of IK-3001 in Japanese Subjects With Peri-/Post-op Pulmonary Hypertension Assoc. With Cardiac Surgery Phase 3
Withdrawn NCT01202045 - Stress Echocardiography in the Detection of Pulmonary Arterial Hypertension in Systemic Sclerosis Patients N/A
Completed NCT00963001 - Effect of Food on the Pharmacokinetics of Oral Treprostinil Phase 1
Completed NCT01121458 - Clevidipine for Vasoreactivity Evaluation of the Pulmonary Arterial Bed Phase 4
Completed NCT00963027 - Effect of Esomeprazole on the Pharmacokinetics of Oral Treprostinil Phase 1
Terminated NCT00825266 - Insulin Resistance in Pulmonary Arterial Hypertension Phase 4
Terminated NCT00384865 - A Study of Aspirin and Simvastatin in Pulmonary Arterial Hypertension Phase 2
Active, not recruiting NCT03926572 - Acute Decompensation of Pulmonary Hypertension N/A
Completed NCT02826252 - Examination of Ventavis (Iloprost) Inhalation Behavior Using the I-Neb AAD System in Patients With Pulmonary Arterial Hypertension When Switching the Iloprost Nebulizer Solution for Inhalation From 10 μg/mL (V10) to 20 μg/mL (V20) N/A
Completed NCT02545465 - A Study to Understand the Treatment Patterns in Patients With Pulmonary Arterial Hypertension or Chronic Thromboembolic Pulmonary Hypertension During a Switch of Treatment to Adempas in Real-life Clinical Practice N/A
Recruiting NCT04498299 - Stress Echocardiography in Patients Recovery From Mild COVID-19 Illness
Recruiting NCT02558582 - Effect of Exercise Training in Patients With Pulmonary Hypertension N/A
Active, not recruiting NCT02562235 - Riociguat in Children With Pulmonary Arterial Hypertension (PAH) Phase 3
Completed NCT02755298 - Chronic Clinical Effect of Acetazolamide Phase 2/Phase 3
Completed NCT02576002 - Epidemiology and Treatment Patterns of Paediatric PAH (Pulmonary Arterial Hypertension) N/A
Terminated NCT03043976 - Using Step Count to Enhance Daily Physical Activity in Pulmonary Hypertension N/A
Completed NCT01317134 - Endothelial Function in Patients With Pulmonary Arterial Hypertension N/A