Hepatocellular Carcinoma Clinical Trial
— ELUCIDATEOfficial title:
An Exosome-Based Liquid Biopsy for the Differential Diagnosis of Primary Liver Cancer
It is sometimes difficult to precisely understand whether a primary liver cancer is a hepatocellular carcinoma or a cholangiocarcinoma. The researchers will develop and validate a liquid biopsy, based on exosomal content analysis and powered by machine learning, to help clinicians differentiate these two cancers before surgery.
Status | Recruiting |
Enrollment | 400 |
Est. completion date | March 15, 2025 |
Est. primary completion date | March 15, 2025 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - A histologically confirmed diagnosis of hepatocellular carcinoma - A histologically confirmed diagnosis of intrahepatic cholangiocarcinoma - Received standard diagnostic and staging procedures as per local guidelines - Availability of at least one blood-derived sample, drawn before receiving any curative-intent treatment Exclusion Criteria: - Lack of or inability to provide informed consent - Synchronous hepatocellular carcinoma and intrahepatic cholangiocarcinoma - Primary liver cancer other than hepatocellular carcinoma or intrahepatic cholangiocarcinoma - Secondary liver cancer |
Country | Name | City | State |
---|---|---|---|
Japan | Graduate School of Medical Sciences, Kyushu University | Fukuoka | |
Japan | Graduate School of Medical Sciences, Kumamoto University | Kumamoto | |
Japan | Hokkaido University Graduate School of Medicine | Sapporo | |
Japan | Tokushima University | Tokushima | |
United States | City of Hope Medical Center | Duarte | California |
Lead Sponsor | Collaborator |
---|---|
City of Hope Medical Center |
United States, Japan,
Arbelaiz A, Azkargorta M, Krawczyk M, Santos-Laso A, Lapitz A, Perugorria MJ, Erice O, Gonzalez E, Jimenez-Aguero R, Lacasta A, Ibarra C, Sanchez-Campos A, Jimeno JP, Lammert F, Milkiewicz P, Marzioni M, Macias RIR, Marin JJG, Patel T, Gores GJ, Martinez I, Elortza F, Falcon-Perez JM, Bujanda L, Banales JM. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology. 2017 Oct;66(4):1125-1143. doi: 10.1002/hep.29291. Epub 2017 Aug 26. — View Citation
Banales JM, Inarrairaegui M, Arbelaiz A, Milkiewicz P, Muntane J, Munoz-Bellvis L, La Casta A, Gonzalez LM, Arretxe E, Alonso C, Martinez-Arranz I, Lapitz A, Santos-Laso A, Avila MA, Martinez-Chantar ML, Bujanda L, Marin JJG, Sangro B, Macias RIR. Serum Metabolites as Diagnostic Biomarkers for Cholangiocarcinoma, Hepatocellular Carcinoma, and Primary Sclerosing Cholangitis. Hepatology. 2019 Aug;70(2):547-562. doi: 10.1002/hep.30319. Epub 2019 Feb 14. — View Citation
Chen VL, Xu D, Wicha MS, Lok AS, Parikh ND. Utility of Liquid Biopsy Analysis in Detection of Hepatocellular Carcinoma, Determination of Prognosis, and Disease Monitoring: A Systematic Review. Clin Gastroenterol Hepatol. 2020 Dec;18(13):2879-2902.e9. doi: 10.1016/j.cgh.2020.04.019. Epub 2020 Apr 11. — View Citation
El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008 May;134(6):1752-63. doi: 10.1053/j.gastro.2008.02.090. — View Citation
Foda ZH, Annapragada AV, Boyapati K, Bruhm DC, Vulpescu NA, Medina JE, Mathios D, Cristiano S, Niknafs N, Luu HT, Goggins MG, Anders RA, Sun J, Meta SH, Thomas DL, Kirk GD, Adleff V, Phallen J, Scharpf RB, Kim AK, Velculescu VE. Detecting Liver Cancer Using Cell-Free DNA Fragmentomes. Cancer Discov. 2023 Mar 1;13(3):616-631. doi: 10.1158/2159-8290.CD-22-0659. — View Citation
Huang C, Xu X, Wang M, Xiao X, Cheng C, Ji J, Fang M, Gao C. Serum N-glycan fingerprint helps to discriminate intrahepatic cholangiocarcinoma from hepatocellular carcinoma. Electrophoresis. 2021 Jun;42(11):1187-1195. doi: 10.1002/elps.202000392. Epub 2021 Mar 1. — View Citation
Kovac JD, Jankovic A, Dikic-Rom A, Grubor N, Antic A, Dugalic V. Imaging Spectrum of Intrahepatic Mass-Forming Cholangiocarcinoma and Its Mimickers: How to Differentiate Them Using MRI. Curr Oncol. 2022 Jan 30;29(2):698-723. doi: 10.3390/curroncol29020061. — View Citation
Lapitz A, Azkargorta M, Milkiewicz P, Olaizola P, Zhuravleva E, Grimsrud MM, Schramm C, Arbelaiz A, O'Rourke CJ, La Casta A, Milkiewicz M, Pastor T, Vesterhus M, Jimenez-Aguero R, Dill MT, Lamarca A, Valle JW, Macias RIR, Izquierdo-Sanchez L, Perez Castano Y, Caballero-Camino FJ, Riano I, Krawczyk M, Ibarra C, Bustamante J, Nova-Camacho LM, Falcon-Perez JM, Elortza F, Perugorria MJ, Andersen JB, Bujanda L, Karlsen TH, Folseraas T, Rodrigues PM, Banales JM. Liquid biopsy-based protein biomarkers for risk prediction, early diagnosis, and prognostication of cholangiocarcinoma. J Hepatol. 2023 Jul;79(1):93-108. doi: 10.1016/j.jhep.2023.02.027. Epub 2023 Mar 1. — View Citation
Li S, Yao J, Xie M, Liu Y, Zheng M. Exosomal miRNAs in hepatocellular carcinoma development and clinical responses. J Hematol Oncol. 2018 Apr 11;11(1):54. doi: 10.1186/s13045-018-0579-3. — View Citation
Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, Roberts LR, Heimbach JK. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018 Aug;68(2):723-750. doi: 10.1002/hep.29913. No abstract available. — View Citation
Sasaki R, Kanda T, Yokosuka O, Kato N, Matsuoka S, Moriyama M. Exosomes and Hepatocellular Carcinoma: From Bench to Bedside. Int J Mol Sci. 2019 Mar 20;20(6):1406. doi: 10.3390/ijms20061406. — View Citation
Si YQ, Wang XQ, Pan CC, Wang Y, Lu ZM. An Efficient Nomogram for Discriminating Intrahepatic Cholangiocarcinoma From Hepatocellular Carcinoma: A Retrospective Study. Front Oncol. 2022 Apr 11;12:833999. doi: 10.3389/fonc.2022.833999. eCollection 2022. — View Citation
Vigano L, Lleo A, Muglia R, Gennaro N, Sama L, Colapietro F, Roncalli M, Aghemo A, Chiti A, Di Tommaso L, Solbiati L, Colombo M, Torzilli G. Intrahepatic cholangiocellular carcinoma with radiological enhancement patterns mimicking hepatocellular carcinoma. Updates Surg. 2020 Jun;72(2):413-421. doi: 10.1007/s13304-020-00750-5. Epub 2020 Apr 22. — View Citation
Wang M, Gao Y, Feng H, Warner E, An M, Jia J, Chen S, Fang M, Ji J, Gu X, Gao C. A nomogram incorporating six easily obtained parameters to discriminate intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Cancer Med. 2018 Mar;7(3):646-654. doi: 10.1002/cam4.1341. Epub 2018 Feb 23. — View Citation
Wang P, Song Q, Ren J, Zhang W, Wang Y, Zhou L, Wang D, Chen K, Jiang L, Zhang B, Chen W, Qu C, Zhao H, Jiao Y. Simultaneous analysis of mutations and methylations in circulating cell-free DNA for hepatocellular carcinoma detection. Sci Transl Med. 2022 Nov 23;14(672):eabp8704. doi: 10.1126/scitranslmed.abp8704. Epub 2022 Nov 23. — View Citation
Wang Y, Zhang C, Zhang P, Guo G, Jiang T, Zhao X, Jiang J, Huang X, Tong H, Tian Y. Serum exosomal microRNAs combined with alpha-fetoprotein as diagnostic markers of hepatocellular carcinoma. Cancer Med. 2018 May;7(5):1670-1679. doi: 10.1002/cam4.1390. Epub 2018 Mar 23. — View Citation
Wu Y, Xia C, Chen J, Qin Q, Ye Z, Song B. Diagnostic performance of magnetic resonance imaging and contrast-enhanced ultrasound in differentiating intrahepatic cholangiocarcinoma from hepatocellular carcinoma: a meta-analysis. Abdom Radiol (NY). 2024 Jan;49(1):34-48. doi: 10.1007/s00261-023-04064-z. Epub 2023 Oct 12. — View Citation
Ye Q, Ling S, Zheng S, Xu X. Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA. Mol Cancer. 2019 Jul 3;18(1):114. doi: 10.1186/s12943-019-1043-x. — View Citation
* Note: There are 18 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Sensitivity | True Positive Rate: the probability of a positive test result, conditioned on the individual truly being positive | Through study completion, an average of 1 year | |
Secondary | Specificity | True Negative Rate: the probability of a negative test result, conditioned on the individual truly being negative | Through study completion, an average of 1 year | |
Secondary | Proportion of correct predictions (true positives and true negatives) among the total number of cases (i.e., accuracy) | A measure of trueness: proportion of correct predictions (both true positives and true negatives) among the total number of cases examined | Through study completion, an average of 1 year |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04209491 -
Interest of the Intervention of a Nurse Coordinator in Complex Care Pathway
|
||
Completed |
NCT03963206 -
Cabozantinib toLERANCE Study in HepatoCellular Carcinoma (CLERANCE)
|
Phase 4 | |
Completed |
NCT03268499 -
TACE Emulsion Versus Suspension
|
Phase 2 | |
Recruiting |
NCT05044676 -
Immune Cells as a New Biomarker of Response in Patients Treated by Immunotherapy for Advanced Hepatocellular Carcinoma
|
||
Recruiting |
NCT05263830 -
Glypican-3 as a Prognostic Factor in Patients With Hepatocellular Carcinoma Treated by Immunotherapy
|
||
Recruiting |
NCT05095519 -
Hepatocellular Carcinoma Imaging Using PSMA PET/CT
|
Phase 2 | |
Recruiting |
NCT05497531 -
Pilot Comparing ctDNA IDV vs. SPV Sample in Pts Undergoing Biopsies for Hepatobiliary and Pancreatic Cancers
|
N/A | |
Completed |
NCT05068193 -
A Clinical Trial to Compare the Pharmacokinetics and Bioequivalence of "BR2008" With "BR2008-1" in Healthy Volunteers
|
Phase 1 | |
Active, not recruiting |
NCT03781934 -
A Study to Evaluate MIV-818 in Patients With Liver Cancer Manifestations
|
Phase 1/Phase 2 | |
Terminated |
NCT03655613 -
APL-501 or Nivolumab in Combination With APL-101 in Locally Advanced or Metastatic HCC and RCC
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT03170960 -
Study of Cabozantinib in Combination With Atezolizumab to Subjects With Locally Advanced or Metastatic Solid Tumors
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT04242199 -
Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of INCB099280 in Participants With Advanced Solid Tumors
|
Phase 1 | |
Completed |
NCT04401800 -
Preliminary Antitumor Activity, Safety and Tolerability of Tislelizumab in Combination With Lenvatinib for Hepatocellular Carcinoma
|
Phase 2 | |
Withdrawn |
NCT05418387 -
A Social Support Intervention to Improve Treatment Among Hispanic Kidney and Liver Cancer Patients in Arizona
|
N/A | |
Active, not recruiting |
NCT04039607 -
A Study of Nivolumab in Combination With Ipilimumab in Participants With Advanced Hepatocellular Carcinoma
|
Phase 3 | |
Terminated |
NCT03970616 -
A Study of Tivozanib in Combination With Durvalumab in Subjects With Advanced Hepatocellular Carcinoma
|
Phase 1/Phase 2 | |
Recruiting |
NCT04118114 -
Phase II Study of PRL3-ZUMAB in Advanced Solid Tumors
|
Phase 2 | |
Recruiting |
NCT06239155 -
A Phase I/II Study of AST-3424 in Subjects With Advanced Solid Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT03642561 -
Evaluation the Treatment Outcome for RFA in Patients With BCLC Stage B HCC in Comparison With TACE
|
Phase 2/Phase 3 | |
Completed |
NCT03222076 -
Nivolumab With or Without Ipilimumab in Treating Patients With Resectable Liver Cancer
|
Phase 2 |