Hepatocellular Carcinoma Clinical Trial
Official title:
Multi-modal Characterisation of Hepatocellular Carcinoma (HCC) Treated With Targeted Radionuclide Therapy (TRT): Prospective Interventional Multicentre National Cohort
OPERANDI project aims to address unmet clinical needs in the current management of advanced-stage HCC treated with TARE by exploring new opportunities provided by imaging-based artificial intelligence (AI) and data augmentation, simultaneous PET-MRI imaging, and novel approaches to increase patient selection and TARE efficacy (genomic profiling, radiopotentiators, and new radionuclides). The research aim to identify predictive and early markers indicative of TARE effectiveness based on a large prospective cohort of HCC patients. This cohort will be used to uncover relevant predictive signatures within the morphological, functional, and molecular imaging data using novel imaging-based AI approaches with a new patient imaging pathway including simultaneous 18F-Choline PET-MRI. Considering this global objective, the objective of this clinical research protocol is to provide clinical, molecular and imaging data in a prospective standardized study, notably by performing systematic pretherapeutic and follow-up PET-MRI, in patients with HCC treated with TARE.
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumors, considered the sixth most common cancer and the third major cause of cancer-related death. Its worldwide incidence is expected to increase in the future. Additionally, it shows marked intertumor and intratumor heterogeneity at the microscopic and molecular levels, and there are currently no reliable imaging markers for predicting response to TARE. TARE is a highly advanced treatment that consists in intra-arterial injection of radioactive microspheres. TARE is already approved for liver metastases and HCC in most countries. So, TARE for HCC, is part of the therapeutic Armamentarium exerting antitumor effects based on radio-biological (DNA damage) and immunological mechanisms. TARE using most currently 90Y-loaded microspheres has proven its non-inferiority with better tolerance and better tumor response in comparison with systemic treatments in patients with HCC. While highly promising, patient stratification and early identification of responders are currently insufficient due to the lack of pertinent imaging biomarkers, either non-invasive or invasive. Furthermore, prior therapy-induced DNA damages may lead to tumor resistance, therefore reducing TARE efficacy. Hence, the absence of a personalized treatment strategy is an unmet need for patients with HCC. This may result in survival disadvantage for non-responders, who could benefit otherwise from early treatment change, with expected more favorable outcomes. Simultaneous PET-MRI: OPERANDI proposes a completely innovative and holistic approach via PET-MRI guided therapy. The research hypothesis is that simultaneous PET-MRI imaging provides more robust non-invasive predictive biomarkers than classical approach and better correlation between quantification of radiation therapy dosimetry and clinical outcomes than PET-CT. This requires technological development of PET-MRI, with most methodological challenges being attenuation correction, reducing the impact of organ motion due to respiration and cardiac motion, and minimizing truncation and susceptibility artifacts. A PET/MRI scan is a two-in-one test that combines images from a positron emission tomography (PET) scan and a magnetic resonance imaging (MRI) scan. This new hybrid technology harnesses the strengths of PET and MRI to produce some of the most highly detailed images currently available. MRI scans use a strong (1.5 to 3T for clinical use) magnetic field to produce detailed morphologic images and some sequences provide functioning information (such as diffusion-weighted, dynamic contrast-enhanced, MR elastography sequence). PET scans use tracers according to the clinical indications to highlight metabolism changes. In HCC, the most common radiotracers are fluorodeoxyglucose (FDG) or Choline, which detect metabolically active malignant lesions. OPERANDI project aims to address unmet clinical needs in the current management of HCC treated with TARE by exploring new opportunities provided by imaging-based artificial intelligence (AI) and data augmentation, simultaneous PET-MRI imaging, and novel approaches to increase patient selection and TARE efficacy (genomic profiling, radiopotentiators, and new radionuclides). Investigators aim to identify predictive and early markers indicative of TARE effectiveness based on a large prospective cohort of HCC patients. This cohort will be used to uncover relevant predictive signatures within the morphological, functional, and molecular imaging data using novel imaging-based AI approaches with a new patient imaging pathway including simultaneous PET-MRI. Considering this global objective, the objective of this clinical research protocol is to provide clinical, molecular and imaging data in a prospective standardized study, notably by performing systematic pretherapeutic and follow-up PET-MRI, in patients with HCC treated with TARE. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04209491 -
Interest of the Intervention of a Nurse Coordinator in Complex Care Pathway
|
||
Completed |
NCT03963206 -
Cabozantinib toLERANCE Study in HepatoCellular Carcinoma (CLERANCE)
|
Phase 4 | |
Completed |
NCT03268499 -
TACE Emulsion Versus Suspension
|
Phase 2 | |
Recruiting |
NCT05044676 -
Immune Cells as a New Biomarker of Response in Patients Treated by Immunotherapy for Advanced Hepatocellular Carcinoma
|
||
Recruiting |
NCT05263830 -
Glypican-3 as a Prognostic Factor in Patients With Hepatocellular Carcinoma Treated by Immunotherapy
|
||
Recruiting |
NCT05095519 -
Hepatocellular Carcinoma Imaging Using PSMA PET/CT
|
Phase 2 | |
Recruiting |
NCT05497531 -
Pilot Comparing ctDNA IDV vs. SPV Sample in Pts Undergoing Biopsies for Hepatobiliary and Pancreatic Cancers
|
N/A | |
Completed |
NCT05068193 -
A Clinical Trial to Compare the Pharmacokinetics and Bioequivalence of "BR2008" With "BR2008-1" in Healthy Volunteers
|
Phase 1 | |
Active, not recruiting |
NCT03781934 -
A Study to Evaluate MIV-818 in Patients With Liver Cancer Manifestations
|
Phase 1/Phase 2 | |
Terminated |
NCT03655613 -
APL-501 or Nivolumab in Combination With APL-101 in Locally Advanced or Metastatic HCC and RCC
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT03170960 -
Study of Cabozantinib in Combination With Atezolizumab to Subjects With Locally Advanced or Metastatic Solid Tumors
|
Phase 1/Phase 2 | |
Active, not recruiting |
NCT04242199 -
Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of INCB099280 in Participants With Advanced Solid Tumors
|
Phase 1 | |
Completed |
NCT04401800 -
Preliminary Antitumor Activity, Safety and Tolerability of Tislelizumab in Combination With Lenvatinib for Hepatocellular Carcinoma
|
Phase 2 | |
Withdrawn |
NCT05418387 -
A Social Support Intervention to Improve Treatment Among Hispanic Kidney and Liver Cancer Patients in Arizona
|
N/A | |
Active, not recruiting |
NCT04039607 -
A Study of Nivolumab in Combination With Ipilimumab in Participants With Advanced Hepatocellular Carcinoma
|
Phase 3 | |
Terminated |
NCT03970616 -
A Study of Tivozanib in Combination With Durvalumab in Subjects With Advanced Hepatocellular Carcinoma
|
Phase 1/Phase 2 | |
Recruiting |
NCT06239155 -
A Phase I/II Study of AST-3424 in Subjects With Advanced Solid Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT04118114 -
Phase II Study of PRL3-ZUMAB in Advanced Solid Tumors
|
Phase 2 | |
Recruiting |
NCT03642561 -
Evaluation the Treatment Outcome for RFA in Patients With BCLC Stage B HCC in Comparison With TACE
|
Phase 2/Phase 3 | |
Completed |
NCT03222076 -
Nivolumab With or Without Ipilimumab in Treating Patients With Resectable Liver Cancer
|
Phase 2 |