Clinical Trials Logo

Clinical Trial Details — Status: Active, not recruiting

Administrative data

NCT number NCT03839706
Other study ID # 17-6065
Secondary ID
Status Active, not recruiting
Phase N/A
First received
Last updated
Start date August 22, 2018
Est. completion date September 2024

Study information

Verified date December 2023
Source University Health Network, Toronto
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Liver transplantation is the standard treatment for patients with early-stage Hepatocellular Carcinoma (HCC). Currently, important treatment decisions, like the selection of patients for transplantation, are made on crude, static tumour characteristics such as the size and number of lesions that do not reflect other aspects of tumour biology. To date, pre-transplantation percutaneous biopsy is the best strategy to assess tumoral differentiation and, consequently, tumor biological behavior. Previous studies have demonstrated that 18F-Fluorodeoxyglucose Positron Emission Tomography Magnetic Resonance Imaging (18F-FDG PET/MRI) may have role in assessing the HCC tumoral differentiation and predict survival after LT. The Investigators will assess the accuracy of 18F-FDG PET/MRI as a tool to predict HCC recurrence after liver transplant. To understand the role of 18F-FDG PET/MRI in prediction of HCC's biological behavior and upon recurrence, the investigators will try to assess whether the findings in 18F-FDG PET/MRI can predict HCC poor tumoral differentiation, if the findings in 18F-FDG PET/MRI are related to presence of circulating tumoral DNA in plasma and try to determine the role of 18F-FDG PET/MRI in predicting HCC recurrence after resection. These findings may impact the selection criteria for liver transplantation.


Description:

Hepatocellular Carcinoma (HCC) is the third leading cause of death by cancer worldwide, being responsible for nearly 700,000 deaths in 2012. Liver transplantation (LT) provides the best results as a curative treatment for patients with early-stage HCC. Other curative treatment strategies for early stages HCC include resection and ablation. However, the recurrence rates are higher than LT. Due to organ shortage, better criteria for recipient selection are necessary. The first widely accepted criteria for graft allocation in HCC patients is the so-called Milan Criteria (MC): single HCC nodule ≤ 5 cm or 3 nodules all ≤ 3 cm, achieving a 4-y survival of 85%. Recently, MC is seen as too restrictive, its inclusion preventing patients who might have better survival following LT when compared to other therapies. Reluctant to have sizing-only criteria, the University of Toronto, since 2004, has applied the so-called Extended Toronto Criteria (ETC) to LT, which offers transplant to patients with any size and any number of tumors provide they do not have systemic cancer-related symptoms, extrahepatic disease, vascular invasion or poorly differentiated tumors. A recent prospective study conducted at University Health Network (UHN) has shown 5-years survival rates of 68% when ECT are applied. Recent studies have demonstrated the need to use, besides the lesion size, variables which can predict the biological behavior of the tumor. Currently, important treatment decisions, like the selection of patients for transplantation, are made on crude, static tumour characteristics such as the size and number of lesions, but do not reflect other aspects of tumour biology. To date, pre-transplantation percutaneous biopsy is the best strategy to assess tumor differentiation and, consequently, tumor biological behavior. However, HCC is a very complex disease. Microscopic and molecular analyses have demonstrated a highly heterogeneous degree of cell differentiation. Patients with more than one tumor may have two or three degrees of cell differentiation between the tumors. Even within a single HCC nodule, more than one clonal mutations can be present. To date, there is not a precise method to determinate the degree of differentiation of each patient's disease and percutaneous core biopsy, an invasive method, is the best estimative the investigators can reach. Since it is impossible to precisely determine the degree of differentiation of HCC with one single tissue sample, the use of imaging becomes necessary. Magnetic resonance imaging (MRI) and enhanced computed tomography (CT) are extensively validated as staging methods for HCC. The use of 18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) is still underevaluated in the field of HCC. However, previous studies have demonstrated that 18F-FDG PET/CT may have role in assessing the HCC tumoral differentiation and predict survival after LT. There is no investigation on use of 18F-FDG PET/MRI as a tool to predict biological behavior in HCC. Recently, the Pugh Lab has developed a circulating tumor DNA (ctDNA) sequencing assay that combines a hybrid-capture method with a novel bioinformatics algorithm to enable full-length sequence analysis of all exons in genes of interest or any other arbitrary genomic region, rather than mutation hotspots13. With the availability of these technologies in our group, the investigators next sought to determine whether these methods were applicable to HCC patients, gathering two innovative tools in transplant patients' care.


Recruitment information / eligibility

Status Active, not recruiting
Enrollment 20
Est. completion date September 2024
Est. primary completion date July 30, 2022
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Histological or radiological diagnosis of HCC (AASLD guidelines) - Listed for LT at UHN - Enrolled in ctDNA study (15-5925) - Able to undergo PET and MRI examination, - Willingness and ability of patient to provide signed voluntary informed consent. - Adults (age = 18-years old) Exclusion Criteria: - Any contraindication to undergoing venipuncture. - Patients with previous history of cancer diagnosed and/or treated within last 5 years, with the exception of non-melanomatous skin cancers and intraepithelial cancers such as cervical intraepithelial neoplasia that were properly treated, are not eligible. - Inability to lie supine for at least 30 minutes.

Study Design


Intervention

Device:
PET MRI
18F-Fluorodeoxyglucose Positron Emission Tomography combined with Primovist MRI

Locations

Country Name City State
Canada Toronto General Hospital Toronto Ontario

Sponsors (1)

Lead Sponsor Collaborator
University Health Network, Toronto

Country where clinical trial is conducted

Canada, 

Outcome

Type Measure Description Time frame Safety issue
Primary 18F-FDG PET/MRI results can identify aggressive HCC behavior and recurrence post transplant PET scan results will be compared with pathology at the time of transplant. Patients will be followed-up 2 years post transplant for recurrence. PET scan results will be compared for Recurrent/non-recurrent patients. 3 years
Secondary 18F-FDG PET/MRI can predict HCC's poor tumoral differentiation PET/MRI reports will be compared with pathology at the time of transplant. 3 years
Secondary 18F-FDG PET/MRI are related to presence of circulating tumor DNA in plasma 18F-FDG PET/MRI scan results will be compared with levels of ctDNA identified in plasma 3 years
See also
  Status Clinical Trial Phase
Recruiting NCT04209491 - Interest of the Intervention of a Nurse Coordinator in Complex Care Pathway
Completed NCT03963206 - Cabozantinib toLERANCE Study in HepatoCellular Carcinoma (CLERANCE) Phase 4
Completed NCT03268499 - TACE Emulsion Versus Suspension Phase 2
Recruiting NCT05044676 - Immune Cells as a New Biomarker of Response in Patients Treated by Immunotherapy for Advanced Hepatocellular Carcinoma
Recruiting NCT05263830 - Glypican-3 as a Prognostic Factor in Patients With Hepatocellular Carcinoma Treated by Immunotherapy
Recruiting NCT05095519 - Hepatocellular Carcinoma Imaging Using PSMA PET/CT Phase 2
Recruiting NCT05497531 - Pilot Comparing ctDNA IDV vs. SPV Sample in Pts Undergoing Biopsies for Hepatobiliary and Pancreatic Cancers N/A
Completed NCT05068193 - A Clinical Trial to Compare the Pharmacokinetics and Bioequivalence of "BR2008" With "BR2008-1" in Healthy Volunteers Phase 1
Active, not recruiting NCT03781934 - A Study to Evaluate MIV-818 in Patients With Liver Cancer Manifestations Phase 1/Phase 2
Terminated NCT03655613 - APL-501 or Nivolumab in Combination With APL-101 in Locally Advanced or Metastatic HCC and RCC Phase 1/Phase 2
Active, not recruiting NCT03170960 - Study of Cabozantinib in Combination With Atezolizumab to Subjects With Locally Advanced or Metastatic Solid Tumors Phase 1/Phase 2
Active, not recruiting NCT04242199 - Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of INCB099280 in Participants With Advanced Solid Tumors Phase 1
Completed NCT04401800 - Preliminary Antitumor Activity, Safety and Tolerability of Tislelizumab in Combination With Lenvatinib for Hepatocellular Carcinoma Phase 2
Withdrawn NCT05418387 - A Social Support Intervention to Improve Treatment Among Hispanic Kidney and Liver Cancer Patients in Arizona N/A
Active, not recruiting NCT04039607 - A Study of Nivolumab in Combination With Ipilimumab in Participants With Advanced Hepatocellular Carcinoma Phase 3
Terminated NCT03970616 - A Study of Tivozanib in Combination With Durvalumab in Subjects With Advanced Hepatocellular Carcinoma Phase 1/Phase 2
Recruiting NCT06239155 - A Phase I/II Study of AST-3424 in Subjects With Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT04118114 - Phase II Study of PRL3-ZUMAB in Advanced Solid Tumors Phase 2
Recruiting NCT03642561 - Evaluation the Treatment Outcome for RFA in Patients With BCLC Stage B HCC in Comparison With TACE Phase 2/Phase 3
Completed NCT03222076 - Nivolumab With or Without Ipilimumab in Treating Patients With Resectable Liver Cancer Phase 2