Clinical Trials Logo

Clinical Trial Summary

The study is a prospective, phase II trial single arm, historical control aimed to test the efficacy and safety of TTFields, using the NovoTTF-100L(P) System, in combination with sorafenib in patient with advanced HCC. The device is an experimental, portable, battery operated device for chronic administration of alternating electric fields (termed TTFields or TTF) to the region of the malignant tumor, by means of surface, insulated electrode arrays.


Clinical Trial Description

PAST PRE-CLINICAL AND CLINICAL EXPERIENCE:

The effect of the electric fields (TTFields, TTF) has demonstrated significant activity in in vitro hepatocellular carcinoma pre-clinical models. In addition, TTFields have shown to inhibit metastatic spread of malignant melanoma in in vivo experiment.

In pilot study, 40 patients with locally advanced or metastatic pancreatic adenocarcinoma received chemotherapy with TTFields (150 kHz) applied to the abdomen. The combination was well tolerated and the only device-related adverse event was contact dermatitis.

In addition, a phase III trial of Optune® (200 kHz) as monotherapy compared to active chemotherapy in recurrent glioblastoma patients showed TTFields to be equivalent to active chemotherapy in extending survival, associated with minimal toxicity, good quality of life, and activity within the brain (14% response rate) (Stupp R., et al., EJC 2012). Finally, a phase III trial of Optune® combined with maintenance temozolomide compared to maintenance temozolomide alone has shown that combined therapy led to a significant improvement in both progression free survival and overall survival in patients with newly diagnosed glioblastoma without the addition of high grade toxicity and without decline in quality of life (Stupp R., et al., JAMA 2017).

DESCRIPTION OF THE TRIAL:

All patients included in this trial are patients with locally advanced hepatocellular carcinoma. In addition, all patients must meet all eligibility criteria.

Eligible patients will be enrolled, baseline tests will be performed and the patients will be treated continuously with the device concomitant with sorafenib until disease progression in the liver.

TTFields treatment will consist of wearing four electrically insulated electrode arrays on the abdomen. Electrode array placement will require shaving of the abdomen/back as necessary before and during the treatment. After an initial short visit to the clinic for training and monitoring, patients will be released to continue treatment at home where they can maintain their regular daily routine.

During the trial the patient will need to return once every 4 weeks to the clinic where an examination by a physician and a routine laboratory examinations will be done. These routine visits will continue for as long as the patient's disease is not progressing in the liver. A routine CT or MRI scan of the abdomen will be performed at baseline and every 12 weeks thereafter, until disease progression in the liver. After this follow up plan, patients will be contacted once per month by telephone to answer basic questions about their health status.

SCIENTIFIC BACKGROUND:

Electric fields exert forces on electric charges similar to the way a magnet exerts forces on metallic particles within a magnetic field. These forces cause movement and rotation of electrically charged biological building blocks, much like the alignment of metallic particles seen along the lines of force radiating outwards from a magnet.

Electric fields can also cause muscles to twitch and if strong enough may heat tissues. TTFields are alternating electric fields of low intensity. This means that they change their direction repetitively many times a second. Since they change direction very rapidly (150 thousand times a second), they do not cause muscles to twitch, nor do they have any effects on other electrically activated tissues in the body (brain, nerves and heart). Since the intensities of TTFields in the body are very low, they do not cause heating.

The breakthrough finding made by Novocure was that finely tuned alternating fields of very low intensity, now termed TTFields (Tumor Treating Fields), cause a significant slowing in the growth of cancer cells. Due to the unique geometric shape of cancer cells when they are multiplying, TTFields cause electrically-charged cellular components of these cells to change their location within the dividing cell, disrupting their normal function and ultimately leading to cell death. In addition, cancer cells also contain miniature building blocks which act as tiny motors in moving essential parts of the cells from place to place. TTFields interfere with the normal orientation of these tiny motors related to other cellular components since they are electrically-charged as well. As a result of these two effects, tumor cell division is slowed, results in cellular death or reverses after continuous exposure to TTFields.

Other cells in the body (normal healthy tissues) are affected much less than cancer cells since they multiply at a much slower rate if at all. In addition TTFields can be directed to a certain part of the body, leaving sensitive areas out of their reach. Finally, the frequency of TTFields applied to each type of cancer is specific and may not damage normally dividing cells in healthy tissues.

In conclusion, TTFields hold the promise of serving as a brand new treatment for hepatocellular carcinoma with very few side effects. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03606590
Study type Interventional
Source NovoCure Ltd.
Contact
Status Active, not recruiting
Phase Phase 2
Start date February 15, 2019
Completion date September 2021

See also
  Status Clinical Trial Phase
Recruiting NCT04209491 - Interest of the Intervention of a Nurse Coordinator in Complex Care Pathway
Completed NCT03963206 - Cabozantinib toLERANCE Study in HepatoCellular Carcinoma (CLERANCE) Phase 4
Completed NCT03268499 - TACE Emulsion Versus Suspension Phase 2
Recruiting NCT05263830 - Glypican-3 as a Prognostic Factor in Patients With Hepatocellular Carcinoma Treated by Immunotherapy
Recruiting NCT05044676 - Immune Cells as a New Biomarker of Response in Patients Treated by Immunotherapy for Advanced Hepatocellular Carcinoma
Recruiting NCT05095519 - Hepatocellular Carcinoma Imaging Using PSMA PET/CT Phase 2
Recruiting NCT05497531 - Pilot Comparing ctDNA IDV vs. SPV Sample in Pts Undergoing Biopsies for Hepatobiliary and Pancreatic Cancers N/A
Completed NCT05068193 - A Clinical Trial to Compare the Pharmacokinetics and Bioequivalence of "BR2008" With "BR2008-1" in Healthy Volunteers Phase 1
Active, not recruiting NCT03781934 - A Study to Evaluate MIV-818 in Patients With Liver Cancer Manifestations Phase 1/Phase 2
Terminated NCT03655613 - APL-501 or Nivolumab in Combination With APL-101 in Locally Advanced or Metastatic HCC and RCC Phase 1/Phase 2
Active, not recruiting NCT03170960 - Study of Cabozantinib in Combination With Atezolizumab to Subjects With Locally Advanced or Metastatic Solid Tumors Phase 1/Phase 2
Active, not recruiting NCT04242199 - Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of INCB099280 in Participants With Advanced Solid Tumors Phase 1
Completed NCT04401800 - Preliminary Antitumor Activity, Safety and Tolerability of Tislelizumab in Combination With Lenvatinib for Hepatocellular Carcinoma Phase 2
Withdrawn NCT05418387 - A Social Support Intervention to Improve Treatment Among Hispanic Kidney and Liver Cancer Patients in Arizona N/A
Active, not recruiting NCT04039607 - A Study of Nivolumab in Combination With Ipilimumab in Participants With Advanced Hepatocellular Carcinoma Phase 3
Terminated NCT03970616 - A Study of Tivozanib in Combination With Durvalumab in Subjects With Advanced Hepatocellular Carcinoma Phase 1/Phase 2
Recruiting NCT06239155 - A Phase I/II Study of AST-3424 in Subjects With Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT04118114 - Phase II Study of PRL3-ZUMAB in Advanced Solid Tumors Phase 2
Recruiting NCT03642561 - Evaluation the Treatment Outcome for RFA in Patients With BCLC Stage B HCC in Comparison With TACE Phase 2/Phase 3
Completed NCT03222076 - Nivolumab With or Without Ipilimumab in Treating Patients With Resectable Liver Cancer Phase 2