View clinical trials related to Hemiparesis.
Filter by:The goal of this study is to learn about the benefits of using a virtual reality gaming system that can be adjusted for a person who has upper arm weakness from stroke. The main question it aims to answer is whether strength and movement in the upper arm be improved by use of the gaming system. Participants will be asked to complete initial measurements of upper arm function, play a video game for one hour, four times a week for five weeks, and repeat the measurements of upper arm function at the end.
This trial aims to investigate whether placebo in isolation (open and hidden) has a specific neural signature in stroke subjects thus providing a novel mechanism to explain placebo effects that can be used to ultimately enhance stroke rehabilitation therapies.
The purpose of the study is to validate the use of smart and widespread instruments to detect kinematic, kinetic and spatio-temporal parameters in gait and postural analysis in hemiparetic and healthy individuals. Device as single Microsoft sensor Kinect v2, wearable sensorized clothing and/or smartphone-type devices will be used; it is also planned to analyze and compare such parameters with those obtained through a technique of manual palpatory analysis. Finally the obtained measures will be compared with the corresponding ones obtained with Three-dimensional instrumented gait analysis (3D-GA).
Paired associative stimulation (PAS) is a non-invasive brain stimulation protocol, where two stimuli (a peripheral and a cortical one, the latter delivered with transcranial magnetic stimulation - TMS) are repeatedly associated to enhance plasticity in the brain. In the present study, a new cross-modal, visuo-motor PAS protocol - called "mirror-PAS"- will be tested as a possible non-invasive brain stimulation treatment in neurological rehabilitation to promote motor recovery and pain reduction. Participants will perform the standard PAS targeting the motor system and the recently developed mirror-PAS in two separate sessions. The investigators will compare the possible effect of the protocols in terms of neurophysiological and behavioral outcomes to identify the optimal PAS method to enhance plasticity and promote sensory-motor function.
The purpose of this research is to learn about practice conditions that may benefit stroke survivors when learning to use their more affected arm to perform a task. Participants will be randomized into two groups. Experimental and control groups will differ by one practice variable that will not be disclosed until completion of testing procedures. Participants will practice a motor task using both their more and less affected arms for two consecutive days. A Pre-Test will be administered on Day 1 before the training begins. Immediate Transfer of Learning will be administered on Day 2 after the completion of training. Delayed (24-hour) Retention and Transfer Tests will be administered on Day 3.
This study will evaluate the feasibility of transcranial direct current stimulation (tDCS) as an adjunct to an outpatient motor skills-based physiotherapy intervention for children and youth with acquired brain injury. Up to 10 children (age 5-18 years) with childhood onset stroke or traumatic brain injury will be randomly allocated to receive active or sham anodal tDCS immediately prior to the physiotherapy session. These sessions will occur twice weekly for a total of 10 sessions. Assessment of gross motor outcome measures will occur immediately before and after the combined tDCS and physiotherapy treatment protocol. The preliminary treatment effect between the two treatment groups will be compared and other feasibility indicators will be evaluated.
Hemiparesis is a frequently observed symptom of stroke. There are various therapy options that are used in the rehabilitation of patients. Some studies have shown that, in addition to unilateral arm training, bilateral arm training can also lead to positive results in treatment and is a useful addition to therapy. The newly developed app requires the coordination of both arms in certain time sequences and intensities or rhythms and addresses different sensory modalities (visual, auditory and kinesthetic). The aim of the study is to examine whether tablet-based training improves bimanual coordination.
In recent years, it has been observed that scapular stabilization exercises given in addition to stretching exercises in stroke patients strengthen the scapular muscles and improve walking and trunk alignment. In a study published in 2020, in which the investigators compared the effects of virtual and real boxing training on upper extremity functions, balance and cognitive functions in stroke patients, significant improvement was observed in each parameter in both groups. When the investigators look at the literature, the investigators see that there is no study comparing the effects of both scapular stabilization and boxing training on upper extremity functions and trunk balance in stroke patients. Therefore the aim of this study, compare the effects of boxing and scapular stabilization training on scapular mobility (primary outcome measure), upper extremity range of motion, shoulder proprioception, scapular balance angle, scapular muscle strength, trunk muscle strength, upper extremity motor functions, trunk balance and treatment satisfaction (secondary outcome measures) in hemiparetic individuals with stroke.
Stroke is a leading cause of disability that often impairs arm function and activities of daily living. The costs of rehabilitation are significant and practical constraints often limit therapy to the first few months after stroke. However many studies have shown that patients in the later stages post-stroke can still continue to benefit from rehabilitation. Technology-assisted therapy may offer a means to efficiently provide ongoing therapies to patients in the later stages (>6 months) post-stroke. This study will determine which patients are best able to benefit from this therapy approach, and will also expand our knowledge of which brain structures need to be intact for patients to benefit from technology-assisted training. The results of this study will help to improve rehabilitation and quality of life for disabled Americans.
The purpose of this study is to improve control of myoelectrically-controlled advanced orthotic devices (an exoskeleton device that use the body's muscle signals to drive movements of a robotic brace) by using advanced predictive decode algorithms, and the use of high count (> 8) surface electromyographic (sEMG) electrodes.