View clinical trials related to Hemiparesis.
Filter by:Constraint-induced movement therapy (CI therapy) is a highly efficacious treatment for residual motor disability in chronic stroke. Its effectiveness is believed to be due, at least in part, to the therapy's ability to aid the brain in "rewiring itself." For example, CI therapy produces increases in the amount of grey matter (the parts of the brain where neuron cell bodies are most closely clustered) in certain areas of the human brain (Gauthier et al., 2008). The cellular and molecular mechanisms that are responsible for this increase in grey matter volume are not known, however. Thus, it is unclear how the therapy helps brains "rewire" themselves. This study aims to better understand the timecourse and cellular/molecular nature of brain changes during CI therapy. Because there is currently no way to directly measure cellular/molecular changes in the brain noninvasively, this study will infer what is happening on a microstructural level using new MRI techniques (three dimensional pictures of the brain). For example, by charting the timecourse of grey matter changes during CI therapy, and cross-comparing this to what is known about the timecourses of different cellular/molecular processes, the investigators can gain a greater understanding of what cellular processes may be responsible for increases in grey matter. The investigators will gain additional information about which cellular processes are important for rehabilitation-induced improvement by measuring larger-scale changes (e.g., amount of blood flow through different brain areas) that accompany cellular changes. The investigators are hopeful that by better understanding how CI therapy can change the brain, the effectiveness of rehabilitation can be improved upon. For example, insight into the mechanisms of rehabilitation-induced brain change may suggest particular drug targets to increase brain plasticity. This study will help us better understand how the brain repairs itself after injury.
Impaired arm and hand function is one of the most disabling and most common consequences of stroke. The Investigators have developed Contralaterally Controlled Functional Electrical Stimulation (CCFES), an innovative neuromuscular electrical stimulation (NMES) treatment for improving the recovery of hand function after stroke. The purpose of this study is to maximize the treatment effect of CCFES by adding stimulated elbow extension. The specific aims and hypotheses are as follows: AIM 1: Estimate the effect of Arm+Hand CCFES on upper limb motor impairment and activity limitation. Hypothesis 1: Stroke survivors treated with Arm+Hand CCFES have better outcomes on upper limb impairment and activity limitation measures than those treated with dose-matched Arm+Hand Cyclic NMES. AIM 2: Estimate the effect of adding stimulated elbow extension to Hand CCFES. Hypothesis 2: Stroke survivors treated with Arm+Hand CCFES will have greater reductions in upper limb impairment and activity limitation than those treated with Hand CCFES. AIM 3: Describe the relationship between treatment effect and time elapsed between stroke onset and start of treatment. Hypothesis 3: Patients who start Arm+Hand CCFES sooner after their stroke achieve better outcomes.
The purpose of the study is to determine whether an existing treatment for problems that participants have with making movements after a stroke can be performed at home.
Of the 5.7 million stroke survivors in the United States, up to 80% exhibit significant weakness in one arm (called "hemiparesis"). This devastating impairment undermines performance of valued activities and quality of life. Although rehabilitation is commonly provided, conventional affected arm rehabilitative strategies have negative evidence, or no evidence, supporting their use. Thus, there remains a need for evidence-based rehabilitative strategies for arm hemiparesis. Newer rehabilitative approaches emphasize repetitive, task-specific practice (RTP) incorporating the affected arm. However, many of these promising regimens require participation in intensive therapies, and most are only efficacious on the least impaired patients. Thus, there remains a need for an efficacious, practical RTP technique to address moderate affected arm hemiparesis. To address the above shortfalls, one of the investigators team members piloted an innovative brace integrating electromyography (EMG) and robotics. In his case series, 8 stroke patients exhibiting moderate arm impairment successfully participated in RTP, with the brace (called the "Myomo") detecting and augmenting their movement attempts. Aided by the Myomo, participation in the RTP regimen reduced subjects' affected arm impairment and spasticity. The next logical step is to test Myomo + RTP efficacy using randomized controlled methods and an appropriate sample size.
Stroke is the leading cause of disability in the United States, producing motor impairments that compromise performance of valued activities. Hemiparesis (or weakness in one arm) is particularly disabling, is the primary impairment underlying stroke-related disability, and the most frequent impairment treated by therapists in the United States. This study will test efficacy of a promising technique in reducing arm disability and increasing function, thereby improving outcomes and health, reducing care costs, for community dwelling patients with stroke-induced hemiparesis.
The purpose of this study is to determine whether split belt or conventional treadmill training can be used to treat walking pattern deficits from stroke and to determine whether this improves gait asymmetry and metabolic efficiency.
The purpose of this study is to test an innovative, advanced FNS microstimulator technology developed by the Alfred Mann Foundation (Santa Clarita, CA) called, the Radio Frequency Microstimulation (RFM) Gait System that promises to provide FNS training for restoration of functional gait components in a manner at least as efficacious as current investigational FNS systems. The design features of the RFM Gait System are intended to address the problems with the current FNS systems. The RFM implant devices are small enough to be inserted using only a 5 mm incision[3]. Because both the electrode (anode and cathode) are contained within the microstimulator, there are no lead wires traversing the skin, joints, or torso/limb junctures. Individual RFMs can be inserted at the motor points and nerves of each of the paretic muscles in the involved limb and coordinated using radio frequency technology.
This is a pilot study of repetitive transcranial magnetic stimulation (rTMS) to test tolerance and efficacy in children who have hemiparesis from acquired or presumed perinatal stroke.
The primary objective of this proposal is to investigate the safety of use of transcranial Direct Current Stimulation (tDCS)in children with hemiparesis. The research question, "Is transcranial Direct Current Stimulation safe for use in children with congenital hemiparesis?" relates to two hypotheses: 1. tDCS will not produce a major adverse event, including seizure activity. 2. No change in paretic or nonparetic hand function or cognitive status will occur.
The purpose of this study is to determine whether FAST (Fast muscle Activation and Stepping Training) exercises will improve walking balance in individuals after stroke to a greater extent than usual care. Hypothesis: The primary hypothesis is that improvements in walking balance will be larger following 12 sessions of FAST exercise retraining compared to usual care in persons in the sub-acute phase after stroke.