Clinical Trials Logo

Clinical Trial Summary

This study is a prospective, randomized-controlled, non-blinded, multi-center, pilot trial to compare standard-of-care left ventricular assist device (LVAD) unloading plus heart failure (HF) medications reverse-remodeling management versus hemodynamics-guided LVAD unloading with use of the wireless monitoring system CardioMEMS plus HF medications reverse-remodeling management.


Clinical Trial Description

LVADs are being increasingly used in end-stage heart failure patients as a bridge to transplant (BTT) or as a destination therapy (DT). Although LVAD recipients are considered to be optimally unloaded with speed optimizations following LVAD implantation, re-hospitalizations due to HF recurrence are far from negligible. Recent studies have reported that at least 35% of hospital readmissions post-LVAD implantation are due to HF exacerbations, volume status changes or other cardiac causes (arrhythmias etc.). This suggests that patients are being sub-optimally unloaded and/or taking inadequate medical therapy and probably this decreases the chances for potential reverse remodeling and myocardial recovery. Moreover, a recent study demonstrated that cardiac dimensions obtained from echocardiography do not adequately reflect the degree of mechanical unloading of the heart. It has also shown strong evidence that pulmonary artery (PA) pressures monitoring can be reliably used to assess the pulmonary capillary wedge pressure (PCWP) and left ventricular end-diastolic pressure (LVEDP). Symptomatic heart failure exacerbation requiring hospital admission may lie at the end of a spectrum of worsening hemodynamics that are unable to be detected before the manifestation of symptoms and limits the potential for myocardial recovery. Therefore, it is proposed that repeatedly adjusting LVAD pump flow speed and tailoring standard HF medications depending on the patient's PA pressure acquired from the CardioMEMS device can optimize pressure and volume unloading and promote reverse cardiac remodeling and recovery. Clinical experience with LVAD support has shown that a subset of LVAD patients can experience reverse cardiac remodeling and significant improvement of myocardial function suggesting that LVAD-induced mechanical unloading of the failing heart may be a plausible therapeutic strategy aiming at myocardial recovery and device removal. These explanted patients have shown "myocardial plasticity" in clinical studies and that they can be responsive and sensitive to load changes. These patients will be carefully monitored to prevent increased load and wall stress to drive again the detrimental spiral of cardiac remodeling and HF recurrence, which appears to be the case in at least one third of LVAD patients after device weaning. Along the same lines, the results from another clinical study showed a significant and large reduction in hospitalization for HF patients who were managed with CardioMEMS. Therefore, further improvement of patients' HF management will depend mainly on better identification and pro-active management of their fluid and hemodynamic status. It is proposed that chronically adjusting HF medications using CardioMEMS-guided hemodynamic assessment in patients who have weaned from LVAD support could improve long-term durability of cardiac improvement after LVAD weaning. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04977310
Study type Interventional
Source University of Utah
Contact John Kirk
Phone 801-585-2944
Email john.kirk@hsc.utah.edu
Status Not yet recruiting
Phase N/A
Start date March 31, 2025
Completion date September 1, 2026

See also
  Status Clinical Trial Phase
Recruiting NCT05650307 - CV Imaging of Metabolic Interventions
Recruiting NCT05654272 - Development of CIRC Technologies
Recruiting NCT05196659 - Collaborative Quality Improvement (C-QIP) Study N/A
Active, not recruiting NCT05896904 - Clinical Comparison of Patients With Transthyretin Cardiac Amyloidosis and Patients With Heart Failure With Reduced Ejection Fraction N/A
Completed NCT05077293 - Building Electronic Tools To Enhance and Reinforce Cardiovascular Recommendations - Heart Failure
Recruiting NCT05631275 - The Role of Bioimpedance Analysis in Patients With Chronic Heart Failure and Systolic Ventricular Dysfunction
Enrolling by invitation NCT05564572 - Randomized Implementation of Routine Patient-Reported Health Status Assessment Among Heart Failure Patients in Stanford Cardiology N/A
Enrolling by invitation NCT05009706 - Self-care in Older Frail Persons With Heart Failure Intervention N/A
Recruiting NCT04177199 - What is the Workload Burden Associated With Using the Triage HF+ Care Pathway?
Terminated NCT03615469 - Building Strength Through Rehabilitation for Heart Failure Patients (BISTRO-STUDY) N/A
Recruiting NCT06340048 - Epicardial Injection of hiPSC-CMs to Treat Severe Chronic Ischemic Heart Failure Phase 1/Phase 2
Recruiting NCT05679713 - Next-generation, Integrative, and Personalized Risk Assessment to Prevent Recurrent Heart Failure Events: the ORACLE Study
Completed NCT04254328 - The Effectiveness of Nintendo Wii Fit and Inspiratory Muscle Training in Older Patients With Heart Failure N/A
Completed NCT03549169 - Decision Making for the Management the Symptoms in Adults of Heart Failure N/A
Recruiting NCT05572814 - Transform: Teaching, Technology, and Teams N/A
Enrolling by invitation NCT05538611 - Effect Evaluation of Chain Quality Control Management on Patients With Heart Failure
Recruiting NCT04262830 - Cancer Therapy Effects on the Heart
Completed NCT06026683 - Conduction System Stimulation to Avoid Left Ventricle Dysfunction N/A
Withdrawn NCT03091998 - Subcu Administration of CD-NP in Heart Failure Patients With Left Ventricular Assist Device Support Phase 1
Recruiting NCT05564689 - Absolute Coronary Flow in Patients With Heart Failure With Reduced Ejection Fraction and Left Bundle Branch Block With Cardiac Resynchronization Therapy