Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02166762
Other study ID # 121099
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date May 2013
Est. completion date September 2015

Study information

Verified date June 2019
Source University of California, San Diego
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

This is a prospective clinical trial to determine the optimal QLV interval during implantation to achieve the best possible response from cardiac resynchronization therapy for heart failure patients.


Description:

Heart failure is a growing epidemic in the United States. Heart failure is associated with shortness of breath, reduced exercise tolerance, and manifestations of peripheral fluid retention. As the disease progresses, there is development of cardiac dyssynchrony (failure of the heart to act as one unit) in the electrical and mechanical functions of the myocardium.

During implantation of a cardiac resynchronization therapy defibrillator (CRT-D) device, three electrical wires are placed in the right atrium (RA), right ventricle (RV) and coronary venous system that drains blood from the left ventricle (LV). The LV lead is placed in the posterolateral tributaries of the coronary venous system using special delivery tools. Pacing therapies to resynchronize the heart have been shown to improve functional class and mortality in patients with severe heart failure i.e. New York Heart Association (NYHA) class III and IV functional status. Current indications for cardiac resynchronization therapy (CRT-D) include severe cardiomyopathy (Ejection Fraction < 35%), with shortness of breath at rest or minimal exertion (NYHA class II, IV), prolonged QRS > 130ms on surface echocardiogram (ECG) and life expectancy more than one year. CRT-D therapy results in decrease of heart failure admissions and improvements in quality of life.

Response to CRT is associated with improvement in functional status by one NYHA functional class schema or by evidence of reverse remodeling (decrease in end systolic LV dimension by 15%). However across clinical trials, a third of the patients are non-responders to CRT therapy. Non-ischemic etiology of heart failure and presence of electrical dyssynchrony on surface ECG suggested by QRS >150ms are associated with better response with CRT. Non response to CRT can be due to inappropriate patient selection, inappropriate device programming, and inappropriate lead placement. However, inappropriate lead placement is the factor that can be changed during device implantation. Adverse changes in morality and heart failure can occur with sub-optimal position of the LV lead. Most echocardiographic parameters to predict responders were not clinically useful. Appropriate positioning near the area of the heart with latest activation (usually posterolateral segment of the left ventricle) is associated with better response. Inter-ventricular delay as measured by the time delay between the two leads in the left and right ventricles (RV-LV delay) was shown to be a better predictor of response. Interval from the first deflection of the surface ECG to the bipolar electrogram (QLV interval) can be used as a surrogate to identify the delayed segments of the left ventricle. Preliminary studies have shown better response using this approach of lead placement in the regions of latest activation. SMART AV study which used a similar algorithm in assessing delay also showed a trend for better response using QLV interval. However, the fluoroscopic lead position was not correlated with QLV interval for that study. We plan to measure this area of delayed activation to target effective lead placement and map the coronary veins to target the longest QLV interval in each patient.

For this study, medical history and demographic information will be collected from patients as well as clinical information from the procedure. The QLV measurements will be collected prior to implant of LV lead. The QLV interval is defined as the measurement from the onset of the QRS width of the surface ECG to the first large positive or negative peak of the LV electrogram (EGM) during a cardiac cycle. QLV EGM will be taken from either the LV pacing lead and/or .014 wire. QLV EGM's will be measured at three distinct points (basal, mid, and distal) within each target vessel. Each data point will be the average of four to six beats to allow for respiratory variance, and recorded using the Bard mapping system. The final lead position will be the area of vein that has the longest QLV interval with appropriate sensing and pacing thresholds. The QLV measurements will be conducted, in addition to all standard of care procedures for CRT-D implantation for patients enrolled in the clinical trial.


Recruitment information / eligibility

Status Completed
Enrollment 20
Est. completion date September 2015
Est. primary completion date September 2014
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria:

- Patients who are indicated for CRT-D devices according to the current guidelines for implantation of cardiac pacemakers and antiarrhythmia devices

Exclusion Criteria:

- Patients who are under the age of 18

- Patients who are pregnant

- Patients who cannot have intravenous contrast due to allergic reactions or chronic renal insufficiency

- Patients who are unable or unwilling for any reason to consent for this study

Study Design


Intervention

Procedure:
QLV interval measurement
Measurements of the QLV interval is defined from the onset of the QRS width of the surface ECG to the first large positive or negative peak of the LV EGM during a cardiac cycle. Recorded EGM's will be measured at three distinct points (basal, mid, and distal) within each target vessel.

Locations

Country Name City State
United States UCSD Sulpizio Cardiovascular Center La Jolla California

Sponsors (2)

Lead Sponsor Collaborator
University of California, San Diego Boston Scientific Corporation

Country where clinical trial is conducted

United States, 

References & Publications (10)

Butter C, Auricchio A, Stellbrink C, Fleck E, Ding J, Yu Y, Huvelle E, Spinelli J; Pacing Therapy for Chronic Heart Failure II Study Group. Effect of resynchronization therapy stimulation site on the systolic function of heart failure patients. Circulation. 2001 Dec 18;104(25):3026-9. — View Citation

Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, Abraham WT, Ghio S, Leclercq C, Bax JJ, Yu CM, Gorcsan J 3rd, St John Sutton M, De Sutter J, Murillo J. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008 May 20;117(20):2608-16. doi: 10.1161/CIRCULATIONAHA.107.743120. Epub 2008 May 5. — View Citation

Ellenbogen KA, Gold MR, Meyer TE, Fernndez Lozano I, Mittal S, Waggoner AD, Lemke B, Singh JP, Spinale FG, Van Eyk JE, Whitehill J, Weiner S, Bedi M, Rapkin J, Stein KM. Primary results from the SmartDelay determined AV optimization: a comparison to other AV delay methods used in cardiac resynchronization therapy (SMART-AV) trial: a randomized trial comparing empirical, echocardiography-guided, and algorithmic atrioventricular delay programming in cardiac resynchronization therapy. Circulation. 2010 Dec 21;122(25):2660-8. doi: 10.1161/CIRCULATIONAHA.110.992552. Epub 2010 Nov 15. — View Citation

Epstein AE, Dimarco JP, Ellenbogen KA, Estes NA 3rd, Freedman RA, Gettes LS, Gillinov AM, Gregoratos G, Hammill SC, Hayes DL, Hlatky MA, Newby LK, Page RL, Schoenfeld MH, Silka MJ, Stevenson LW, Sweeney MO; American College of Cardiology/American Heart Association Task Force on Practice; American Association for Thoracic Surgery; Society of Thoracic Surgeons. ACC/AHA/HRS 2008 guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: executive summary. Heart Rhythm. 2008 Jun;5(6):934-55. doi: 10.1016/j.hrthm.2008.04.015. Epub 2008 May 19. Review. Erratum in: Heart Rhythm. 2009 Jan;6(1):e1. — View Citation

Feldman AM, de Lissovoy G, Bristow MR, Saxon LA, De Marco T, Kass DA, Boehmer J, Singh S, Whellan DJ, Carson P, Boscoe A, Baker TM, Gunderman MR. Cost effectiveness of cardiac resynchronization therapy in the Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure (COMPANION) trial. J Am Coll Cardiol. 2005 Dec 20;46(12):2311-21. — View Citation

Gold MR, Niazi I, Giudici M, Leman RB, Sturdivant JL, Kim MH, Yu Y, Ding J, Waggoner AD. A prospective comparison of AV delay programming methods for hemodynamic optimization during cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2007 May;18(5):490-6. Epub 2007 Feb 21. — View Citation

Khan FZ: Targerted LV placement to guide cardiac resynchronization therapy. A randomized controlled trial (TARGET). ACC 2011, pp.

McAlister FA, Ezekowitz J, Hooton N, Vandermeer B, Spooner C, Dryden DM, Page RL, Hlatky MA, Rowe BH. Cardiac resynchronization therapy for patients with left ventricular systolic dysfunction: a systematic review. JAMA. 2007 Jun 13;297(22):2502-14. Review. — View Citation

Singh JP, Fan D, Heist EK, Alabiad CR, Taub C, Reddy V, Mansour M, Picard MH, Ruskin JN, Mela T. Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm. 2006 Nov;3(11):1285-92. Epub 2006 Aug 10. Erratum in: Heart Rhythm. 2006 Dec;3(12):1515. — View Citation

Singh JP, Klein HU, Huang DT, Reek S, Kuniss M, Quesada A, Barsheshet A, Cannom D, Goldenberg I, McNitt S, Daubert JP, Zareba W, Moss AJ. Left ventricular lead position and clinical outcome in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT) trial. Circulation. 2011 Mar 22;123(11):1159-66. doi: 10.1161/CIRCULATIONAHA.110.000646. Epub 2011 Mar 7. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary QLV measurement Measurements of the QLV interval is defined from the onset of the QRS width of the surface ECG to the first large positive or negative peak of the LV electrogram (EGM) during a cardiac cycle. 15 minutes
See also
  Status Clinical Trial Phase
Recruiting NCT05654272 - Development of CIRC Technologies
Recruiting NCT05196659 - Collaborative Quality Improvement (C-QIP) Study N/A
Recruiting NCT05650307 - CV Imaging of Metabolic Interventions
Active, not recruiting NCT05896904 - Clinical Comparison of Patients With Transthyretin Cardiac Amyloidosis and Patients With Heart Failure With Reduced Ejection Fraction N/A
Completed NCT05077293 - Building Electronic Tools To Enhance and Reinforce Cardiovascular Recommendations - Heart Failure
Recruiting NCT05631275 - The Role of Bioimpedance Analysis in Patients With Chronic Heart Failure and Systolic Ventricular Dysfunction
Enrolling by invitation NCT05564572 - Randomized Implementation of Routine Patient-Reported Health Status Assessment Among Heart Failure Patients in Stanford Cardiology N/A
Enrolling by invitation NCT05009706 - Self-care in Older Frail Persons With Heart Failure Intervention N/A
Recruiting NCT04177199 - What is the Workload Burden Associated With Using the Triage HF+ Care Pathway?
Terminated NCT03615469 - Building Strength Through Rehabilitation for Heart Failure Patients (BISTRO-STUDY) N/A
Recruiting NCT06340048 - Epicardial Injection of hiPSC-CMs to Treat Severe Chronic Ischemic Heart Failure Phase 1/Phase 2
Recruiting NCT05679713 - Next-generation, Integrative, and Personalized Risk Assessment to Prevent Recurrent Heart Failure Events: the ORACLE Study
Completed NCT04254328 - The Effectiveness of Nintendo Wii Fit and Inspiratory Muscle Training in Older Patients With Heart Failure N/A
Completed NCT03549169 - Decision Making for the Management the Symptoms in Adults of Heart Failure N/A
Recruiting NCT05572814 - Transform: Teaching, Technology, and Teams N/A
Enrolling by invitation NCT05538611 - Effect Evaluation of Chain Quality Control Management on Patients With Heart Failure
Recruiting NCT04262830 - Cancer Therapy Effects on the Heart
Completed NCT06026683 - Conduction System Stimulation to Avoid Left Ventricle Dysfunction N/A
Withdrawn NCT03091998 - Subcu Administration of CD-NP in Heart Failure Patients With Left Ventricular Assist Device Support Phase 1
Recruiting NCT05564689 - Absolute Coronary Flow in Patients With Heart Failure With Reduced Ejection Fraction and Left Bundle Branch Block With Cardiac Resynchronization Therapy