Heart Failure With Preserved Ejection Fraction Clinical Trial
Official title:
Exploring Intramyocellular Magnesium Augmentation: Implications for Myocardial and Skeletal Muscle Metabolism in Individuals With Heart Failure With Preserved Ejection Fraction
Low magnesium levels are surprisingly common in those with a heart condition known as HFpEF, where the heart pumps well but is too rigid to fill properly with blood. While routine blood tests can check magnesium levels, they don't tell us how much magnesium is actually inside the heart and muscle cells, where it's vital for energy and overall function. Our research aims to get a clearer picture by looking directly at the magnesium inside these cells and understanding its role in the body's energy production and usage. We're also interested in how magnesium levels affect symptoms and the body's handling of sugar. We're using advanced medical imaging techniques, like heart magnetic resonance imaging (MRI) and other heart and muscle function tests, at rest and when the heart is working hard to help answer these questions. We'll compare the magnesium levels inside the cells before and after giving a supplement of magnesium to see if this can make a difference in how the heart and muscles work.
Hypomagnesaemia is prevalent among patients suffering from heart failure with preserved ejection fraction (HFpEF), and in those with predisposing risk factors such as obesity and diabetes. The intricate link between hypomagnesaemia and the pathophysiological processes of HFpEF remains to be fully elucidated. However, its notable prevalence suggests a significant role in the onset and advancement of the disease. Serum magnesium (S-Mg) is commonly used to evaluate Mg status, however, it does not accurately reflect true intracellular Mg concentrations ([Mg2+]i), where this essential ion exerts its beneficial effects. Thus, previous literature lacks a thorough evaluation of [Mg2+]i in HFpEF, and specifically the potential impact of Mg replete physiology. The research hypothesis is that [Mg2+]i is related to myocardial and skeletal muscle (SM) energetics and performance in patients with HFpEF. The study aims to explore the role of [Mg2+]i at a functional and cellular level in cardiac and SM, symptomatology, and insulin sensitivity; comparing a HFpEF population with healthy and matched controls. Using the chemical shift difference in the resonance frequencies of the α- and β- phosphate resonances in magnetic resonance spectroscopy (MRS), [Mg2+]i will be measured, comparing it to S-Mg. Blood samples for cardiac biomarkers, electrolytes, and markers of HFpEF risk factors (such as lipid profile, HbA1C and TSH) will be taken and a calf leg raise performed. Advanced imaging techniques at rest and stress including cardiac magnetic resonance imaging (CMR), MRS and echocardiography will be performed. MRS measurements include cellular energetics (Phosphocreatine [PCr]/ATP), rate of myocardial ATP delivery (CK flux and KfCK) and skeletal muscle energetics (PCr recovery Tau). At two time points post-Mg augmentation (immediate and delayed [7-15 days]), investigations will be repeated. This study aspires to quantify [Mg2+]i in the HFpEF population compared with healthy and matched controls, juxtapose its levels with S-Mg, and examine its significance in the pathophysiology, functional and cellular performance, and symptom presentation of HFpEF. The study aims to recruit 45 individuals with HFpEF, 20 healthy controls and 20 age-and sex-matched individuals over a 2-year period. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Suspended |
NCT05839730 -
Fast Induced Remodeling in Heart Failure With Preserved Ejection Fraction
|
N/A | |
Recruiting |
NCT05095688 -
Relationship Between Adipose Tissue Distribution and Arterial Stiffness in HFpEF
|
||
Recruiting |
NCT06379152 -
Effect of Bilirubin on Prognosis in Heart Failure With Preserved Ejection Fraction
|
||
Recruiting |
NCT05676684 -
Dapagliflozin, Spironolactone or Both for HFpEF
|
Phase 2/Phase 3 | |
Recruiting |
NCT04153136 -
Effects of Sacubitril/Valsartan on Subclinical Heart Failure in HIV (The ENCHANTMENT HIV Study)
|
Phase 2 | |
Recruiting |
NCT05715697 -
Renal Denervation in Patients With Chronic Heart Failure With Preserved Ejection Fraction
|
N/A | |
Recruiting |
NCT06114498 -
Hospital Register of Decompensated Heart Failure With Preserved Ejection Fraction
|
||
Recruiting |
NCT04745013 -
PeRsonalIzed remOtely Guided Preventive exeRcIse Therapy for a healThY Heart
|
N/A | |
Completed |
NCT05126836 -
Cilostazol for HFpEF
|
Phase 2 | |
Completed |
NCT05586828 -
A Single-center Retrospective Cohort Study to Explore the Prognostic Significance of CONUT in Elderly CAD Patients With HFpEFand Compare CONUT With Other Objective Nutritional Indices.
|
||
Recruiting |
NCT04594499 -
The Relationship Between Pericardial Fat Thickness and Arterial Stiffness in HFpEF Patients
|
||
Active, not recruiting |
NCT05204238 -
Follow Up of acuTe Heart failUre: a pRospective Echocardiographic and Clinical Study (FUTURE)
|
||
Completed |
NCT04535726 -
The Relationship Between Blood Pressure and Arterial Stiffness in HFpEF Patients With Different Levels of Obesity
|
||
Recruiting |
NCT03550235 -
Exploration of Dyspnea at Non-high Brain Natriuretic Peptide (BNP)
|
||
Completed |
NCT04633460 -
Acute Effects of Exogenous Ketone Ester Administration in Heart Failure
|
Phase 2 | |
Completed |
NCT06228807 -
Clinical Characteristics and Predictors of Adverse Outcomes in HFpEF
|
||
Active, not recruiting |
NCT05284617 -
Exploratory Ph 2A, Double-Blind, Placebo-Controlled Dose Escalation Study of Safety, Tolerability, PD, & PK of HU6 for Subjects With Obese HFpEF
|
Phase 2 | |
Recruiting |
NCT05562063 -
Sotagliflozin in Heart Failure With Preserved Ejection Fraction (HFpEF) Patients
|
Phase 4 | |
Recruiting |
NCT06027307 -
Enavogliflozin Outcome Trial in Functional Tricuspid Regurgitation
|
Phase 3 | |
Withdrawn |
NCT05322616 -
Single-Ascending Dose Study of JK07 in Subjects With HFpEF
|
Phase 1 |